Aesthetic Bridge Rails, Transitions, and Terminals For Park Roads and Parkways

U.S. Department of Transportation

Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, Virginia 22101-2296

1.	Report HO_{2} FHUA-RO-90-052	3. Reciolent's catalog Ho.
4. Iltle and subtiflet aEsthetic bridge rails, transitions, and terminals FOR PARK RONDS AND PARKUAYS		5. $\frac{\text { Report Date }}{\text { May } 1990}$
		6. Performing Organization Code
7.	Author(s) Kathieen L. Hancock, Allen G. Hansen and Joe B. Mayer	8. $\frac{\text { Performing Orgenization Report No. }}{11600-1}$
9. Performing organization kame and Address The Scientex Corporation Engincering systems division 1750 New York Avenue, Northwest Heshington, DC 20006		10. $\frac{\text { Hork Unit Mo. (TRAIS) }}{\text { HCP } 3 \text { ASCO112 }}$
		11. $\frac{\text { Contract or Grant No. }}{\text { DTFH71-88-2-00005 }}$
12. Sponsoring Agency Name and Address Office of Safety and Traffic Operations R\&D Federal Highway Adninistration 6300 Georgetom Pike Mclean, Virginia 22101-2296		13. Type of Report and Period Covered Finsl Report May 1988 - Decenter 1989
		14. Sponsoring Agency code

15. Supplementary Motes

FHWA Contracting Officer's fechnical Representative: Charles F. McDevitt, P.E. (HSR-20)
16. Abstract

The objective of this project was to test sesthetic bridge rails for park roads, parkways, and other roads under Federal jurisdiction. Four designs were analyzed and evaluated: the Modified kansas corral bridge rail, the Forest Service glulam bridge rail, the Hatchez Trace bridge rail, and the aluminm tri-rail bridge rail with sidewalk. Two designs were tested and evaluated: the forest Service glulan bridge rail and the Modified Kansas Corral bridge rail. Two full-scele crash tests were conducted with each design.

The Forest Service glulam bridge rail and the Modified kansas Corral bridge rail passed both small sedan and pickup truck full-scale tests. Vehicle behavior during and after impact was, in all cases, acceptable. Conputer simutation on the Modified Kansas Corral bridge rail and the Natcher Trace bridge rail indicated that the vehicle would be redirected with no vaulting. The Aluminm tri-Rail bridge rait has a high snagging potential.

Both the Modified Kansas Corral and Natchaz Trace designs should be subnitted for certification as acceptable for use on Federal Lands highways, including Indian Reservation roads, Wational Park roads and parkways, and forest highways. based on the analyses conducted, the Natchez Trace bridge rail should be tested in its current design to Perfornance Level 1 of the 1989 MSHTO guide specifications. The Aluminum Iri-Rail bridge rail should be modified and submitted for full-scale testing to Performance Level 1.

	Key Worda Guardrall Crash te Bridge rall Highway Tranaition	Crash test Highway safety		18. Distribution Statment Wo restrietions. This docunent is avallable to the public through the Mational Technical Information Service, Springfield, Virginia 22161.			
19.	security clessif. (of this report) Unclassified		Security Clios	sif. Cof this peats		$\frac{\text { Mo. of Pesess }}{145}$	22. Price

SECTION PAGE

1. INTRODUCTION AND RESEARCH APPROACH 1
a. Statement of the Problem. 1
b. Objectives and Scope 1
c. Research Approach and Report Organization 1
Task A. Barrier analysis and design 2
Task B. Full-scale tests 2
Task C. Final report 3
2. SUMMARY OF ANALYSIS 3
a. Design Reviews 3
b. Analyses Conducted 13
c. Final Designs 15
d. Test Procedures 17
e. Full-Scale Crash Tests 17
(1) Glulam Bridge Rail 17
Test WB-1. Small sedan 17
Test WB-2. Pickup truck. 27
(2) Modified Kansas Corral Bridge Rail 36
Test KM-1. Small sedan 36
Test KM-2. Pickup truck 44
3. CONCLUSIONS AND RECONMENDATIONS 52
a. Conclusions 52
b. Recommendations 53
APPENDIX A COMPUTER SIMULATION RESULTS 54
APPENDIX B FULL-SCALE CRASH TEST REPORTS 66
APPENDIX C SUMMARY OF RESULTS, TEST WB-1 82
APPENDIX D SUMMARY OF RESULTS, TEST WB-2 95
APPENDIX E SUMMARY OF RESULTS, TEST KM-1 108
APPENDIX F SUMMARY OF RESULTS, TEST KM-2 122
REFERENCES 136
Figure Page
1 Glulum bridge rail 4
2a Modified Kansas Corral bridge rail 5
2b Modified Kansas Corral bridge rail (continued) 6
2c Modified Kansas Corral bridge rail (continued) 7
3a Natchez Trace bridge rail 8
3b Natchez Trace bridge rail (continued) 9
3c Natchez Trace bridge rail (continued) 10
4a Aluminum Tri-Rail bridge rail with sidewalk 11
4b Aluminum Tri-Rail bridge rail with sidewalk (cont.) 12
5 Graphic determination of snagging potential 14
6Test WB-1 post-test details (continued)26
10a Test WB-2 pre-test details 28Test WB-2 pre-test details (continued)29
WB-2 pickup truck test results 30
Test WB-2 post-test details 34
Test WB-2 post-test details (continued) 35
Test KM-1 pre-test details 37
Test KM-1 pre-test details (continued) 38
KM-1 small sedan test results. 40
Figure Page
15a Test KM-1 post-test details 42
15b Test KM-1 post-test details (continued) 43
16a Test KM-2 pre-test details 45
16b Test KM-2 pre-test details (continued) 46
17 KM-2 pickup truck test results 48
18a Test KM-2 post-test details 50
18b Test KM-2 post-test details (continued) 5119a
Modified Kansas Corral bridge rail with 1800-1b (817 kg) computer simulation results 54
19b Modified Kansas Corral bridge rail with 1800-1b (817 kg) computer simulation results (continued) 55
20a Modified Kansas Corral bridge rail with 5400-1b (2450 kg) computer simulation results. 56
20b Modified Kansas Corral bridge rail with 5400-1b (2450 kg) computer simulation results (continued) 57
21 a Natchez Trace bridge rail with $1800-1 \mathrm{~b}$ (817 kg) computer simulation results 58
21b Natchez Trace bridge rail with $1800-1 \mathrm{~b}$ (817 kg) computer simulation results (continued) 59
22a Natchez Trace bridge rail with 5400-1b (2450 kg) computer simulation results 60
22b Natchez Trace bridge rail with $5400-1 \mathrm{~b}(2450 \mathrm{~kg}$ computer simulation results (continued) 61
23a Aluminum Tri-Rail bridge rail with sidewalk 1800-1b (817 kg) computer simulation results 62
23b Aluminum Tri-Rail bridge rail with sidewalk 1800-1b (817 kg) computer simulation results (continued) 63
24a Aluminum Tri-Rail bridge rail with sidewalk 5400-1b (2450 kg) computer simulation results 64
24b Aluminum Tri-Rail bridge with sidewalk 5400-1b (2450 kg) computer simulation results (continued) 65

LIST OF FIGURES (CONTINUED)

Fiqure Page
25 Barrier construction details, test WB-1 85
2627 Sequential photographs as viewed from behindthe rail, test WB-I87Sequential photographs during impact(overhead view)126
42
Sequential photographs during impact as viewed from downstream, test KM-2. 127
43 Summary of results, test KM-2 128
44 Vehicle acceleration plots, test KM-2 129
Table Page
1
Test matrix. 22
After impact vehicle trajectory, test WB-1 22
Permanent barrier deflections, test WB-1 23
Vehicle damage measurements, test WB-1 27
After impact vehicle trajectory, test WB-2 31
Permanent barrier deflections, test WB-2 32
Vehicle damage measurements, test WB-2 32
After impact vehicle trajectory, test KM-1 41
Vehicle damage measurements, test KM-1 44
After impact vehicle trajectory, test KM-2 49
Vehicle damage measurements, test KM-2 52
After impact vehicle trajectory, test WB-1. 90
Permanent barrier deflections, test WB-1. 91
Vehicle kinetics data, test WB-1 92
Occupant risk data, test WB-1 93
Vehicle damage measurements, test WB-1. 94
After impact vehicle trajectory, test WB-2. 101
Permanent barrier deflections, test WB-2 102
Vehicle kinetics data, test WB-2. 104
Occupant risk data, test WB-2 106
Vehicle damage measurements, test WB-2 107
After impact vehicle trajectory, test KM-1 116
Vehicle kinetics data (film), test KM-1 117
Vehicle kinetics data (transducer), test KM-1 118

LIST OF TABLES (CONTINUED)

Table Page

Occupant risk data (film), test KM-1............... 119
Occupant risk data (transducer), test KM-1....... 120
Vehicle damage measurements, test KM-1............ 121
After impact vehicle trajectory, test KM-2....... 130
Vehicle kinetics data (film), test KM-2........... 131
Vehicle kinetics data (transducer), test KM-2.... 132
Occupant risk data (film), test KM-2............... 133
Occupant risk data (transducer), test KM-2....... 134
Vehicle damage measurements, test KM-2............ 135

1. INTRODUCTION AND RESEARCH APPROACH

a. Statement of the Problem

The work reported here is part of the Coordinated Federal Lands Highway Technology Implementation program. It is intended to serve the immediate needs of those individuals who design and construct Federal Lands highways, including Indian Reservation roads, National Park roads and parkways, and forest highways. The results of this study can be used for all of these entities.

A varied assortment of bridge rails, transitions and terminals from approach guardrails to the bridge rail itself are being used on bridges under the jurisdiction of the National Park Service and other Federal agencies. These devices are intended to blend in with the roadside to preserve the visual integrity of parks and parkways. However, few have ever been crash tested. Therefore, this program was instituted to begin an evaluation process to ensure that devices used are safe for the traveling public.
b. Objectives and Scope

The objective of this effort was to crash-test aesthetic bridge rails for roads, under Federal jurisdiction. Four designs were analyzed and evaluated: the Modified Kansas Corral bridge rail, the glulam bridge rail, the Natchez Trace bridge rail, and the Aluminum Tri-Rail bridge rail with sidewalk. Two designs were evaluated by testing: the glulam bridge rail and the Modified Kansas Corral bridge rail. Two full-scale crash tests were conducted with each design.

c. Research Approach and Report Organization

This project was composed of three principal tasks which are discussed below. Section 2 presents a summary of the analyses and tests conducted, and section 3 lists the conclusions and recommendations. Drawings of the evaluated bridges are given in section 2. The results of the computer simulations are presented in appendix A. Appendix B includes a copy of the test report for each of the four tests.

Task A. Barrier analysis and design, Structural analysis and computer simulations were used to evaluate certain barrier designs before testing. These analyses led to some proposed changes in the rail designs to improve their safety performance without significantly affecting aesthetics, construction and/or maintenance costs.

Task B. Full-scale tests. Four full-scale tests were conducted during this program, as shown in table 1 . All test vehicles procured during the testing program were 1982 or later models. In addition, all test procedures, test instrumentation, and the test report contents were in accordance with the guidelines in National Cooperative Highway Research Program (NCHRP) Report No. 230, and the American Association of State Highway and Transportation Officials (AASHTO) Guide Specifications for Bridge Railings, 1989. (1.2)

		Table 1. Test matrix.		
		Impact Speed	Impact Angle	Barrier Installation
WB-1	1800 lb sedan	$50 \mathrm{mi} / \mathrm{h}$	20°	Glulam bridge rail
WB-2	5400 1b pickup	$45 \mathrm{mi} / \mathrm{h}$	20°	Glulam bridge rail
KM-1	1800 lb sedan	$50 \mathrm{mi} / \mathrm{h}$	20°	Modified Kansas Corral rail
KM-2	5400 1b pickup	$45 \mathrm{mi} / \mathrm{h}$	20°	Modified Kansas Corral rail
$\begin{aligned} & 1 \mathrm{lb}= \\ & 1 \mathrm{mi} / \mathrm{t} \end{aligned}$	$\begin{aligned} & =0.454 \mathrm{~kg} \\ & \mathrm{~h}=0.447 \mathrm{~m} / \mathrm{s} \end{aligned}$			

Reporting requirements included the vehicle maximum $50 \mathrm{~m} / \mathrm{s}$ accelerations and changes in vehicle velocity and momentum. High-speed and real-time films, slides, and still photographs were made of each test. The vehicle crush depth was measured using a minimum of six points before and after each test. The depth measurement points were equally spaced along the length of the damaged area to generally describe the damage penetration profile. In addition, the maximum static crush was measured. The vehicle trajectory after impact was also measured.

One uninstrumented restrained anthropomorphic dummy was used in the driver's seat of each test vehicle to assess the probability of occupant injury. Each dummy was a 50th percentile male. An onboard camera was utilized to record the motions of the dummy.

Task C. Final report. The final task for this contract was preparation of the final report, which describes the tests conducted, and a comprehensive discussion of conclusions and recommendations derived from the effort. In addition, a separate two page summary was prepared that highlights the objectives, research approach, results and conclusions, and which references the final report.

2. SUMMARY OF ANALYSIS

Design reviews, analyses conducted, final designs, test procedures, and test results are briefly described in this section. Detailed information on the test installations and results is contained in appendix B (Full-Scale Crash Test Reports).

a. Design Reviews

Four bridge rail designs were reviewed as part of this contract as listed below:

1. Glulam bridge rail
2. Modified Kansas Corral bridge rail
3. Natchez Trace bridge rail
4. Aluminum Tri-Rail bridge rail with sidewalk.

Drawings of each system are presented in figures 1 through 4, a, b, and c respectively. A discussion of the different analyses performed on each system is presented in the next section and the suggested modification to the Aluminum Tri-Rail bridge rail is given in the following section.

Glulam Bridge Rail.
Design calculations were obtained from Wheeler Consolidated Industries, the manufacturer, for this system. These were reviewed prior to testing and no modifications were recommended.

Figure l. Glulam bridge rail.

> Curb and rail elevation (Scale $\frac{1}{2}$ in $\left.=1 \mathrm{ft}\right)$

n
Left section

Right section

Figure 2a. Modified Kansas Corral bridge rail.

ABOVE WING

soove slat

Figure 2b. Modified Kansas Corral bridge rail (continued).

Figure 2c. Modified Kansas Corral bridge rail (continued).

Figure 3a. Natchez Trace bridge rail.

RAR AND POST DETALS

Figure 3b. Natchez Trace bridge rail (continued).

CURB AND RAL SECTION
scat ols 1-0.

Figure 3c. Natchez Trace bridge rail (continued).

Figure 4a. Aluminum Tri-Rail bridge rail with sidewalk.

Figure 4b. Aluminum Tri-Rail bridge rail with sidewalk (continued).

Modified Kansas Corral Bridge Rail.

Strength analyses were performed on this system prior to testing to ensure that this design is equal to or superior to the previously tested Modified Kansas Corral. ${ }^{(2)}$ In addition, a computer simulation was performed to provide insight into vehicle stability while impacting this profile. After reviewing this information, it was determined that this design would perform satisfactorily with no modifications and it was correspondingly evaluated by crash test.

Natchez Trace Bridge Rail.

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. No modifications were recommended for this system. This was not confirmed because no full-scale tests were performed.

Aluminum Tri-Rail Bridge Rail With Sidewalk.

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. Because of limited modeling capabilities of the simulation program, additional review was performed based on guidelines provided in reference 3. From figure 5, this system indicates a high snagging potential. A blockout is recommended for the upper two rails to reduce this potential. This is shown in section 2-c. Full-scale crash tests were not performed on this design.

b. Analyses Conducted

Three types of analyses were performed during this study: strength, computer simulation, and wheel snagging using graphs.

Strength.

Elastic analyses were conducted on the Modified Kansas Corral bridge rail using the BRIDGE program (3) and the yield line analyses used by Hirsch and Bronstad. $(4,5)$ Results from these were compared with the same analyses of the Modified Kansas Corral bridge rail that was tested and reported in reference 3. In all cases, the Western Bridge Rail was equivalent or stronger than the tested rail.

Figure 5. Graphic determination of snagging potential.

Computer Simulation.

Computer simulations were performed on the Modified Kansas Corral bridge rail, the Natchez Trace bridge rail, and the Aluminum Tri-Rail bridge rail with sidewalk. NARD was the computer program that was used because of its three-dimensional capability. The impact conditions that were used correspond to Performance Level 1 from the 1989 AASHTO guidelines, the $1800-1 \mathrm{~b}(817-\mathrm{kg})$ mini-sedan at $50 \mathrm{mi} / \mathrm{h}(80.5 \mathrm{~km} / \mathrm{h})$ and a 20 degree angle and the $5400-\mathrm{lb}$ (2450$\mathrm{kg})$ pickup at $45 \mathrm{mi} / \mathrm{h}(72.4 \mathrm{~km} / \mathrm{h})$ and a 20 degree angle. The profiles of the railings were accurately modeled, while the rails themselves were simplified because of the limited number of barrier elements available in NARD and limited funding available for simulation. This limitation particularly affected the Aluminum Tri-Rail bridge rail. The results of the simulations are presented in appendix A and should be used sparingly to predict trends only. In all cases, the vehicles were smoothly redirected with no indication of vaulting.

Graphs.
Guides for wheel snagging were developed in reference 3 . Figure 5 presents the design guideline. This was used to determine the potential of the Aluminum Tri-Rail bridge rail for snagging.

c. Final Designs

Every bridge rail reviewed, with the exception of the Aluminum Tri-Rail bridge rail, remained unchanged. The drawings presented in section B represent the final design. The Aluminum Tri-Rail was modified to include blockouts at the top two rails as shown in figure 6 . This configuration was not submitted to full-scale crash evaluation.

d. Test Procedures

Two bridge rail designs were evaluated as part of this contract, the Glulam bridge rail and the Modified Kansas Corral rail. For each design, two tests were conducted, one with an $1800-1 \mathrm{~b}$ ($817-\mathrm{kg}$) sedan and one with a $5400-1 b(2450-\mathrm{kg})$ pickup truck. The test matrix is presented in section 1.

Impact events were recorded from transducers mounted on the vehicle. Extensive high speed and real time film coverage also documented the barrier, vehicle and dummy behavior. Color slides and black and white photographs were taken before, during and after the test to provide additional documentation.
e. Full-Scale Crash Tests
(1) Glulam Bridge Rail

The Glulam bridge rail system was manufactured and provided by Wheeler Consolidated Industries, Inc., of St. Louis Park, Minnesota. The barrier system consists of $18-\mathrm{ft}(5.5-\mathrm{m})$ long by $7-\mathrm{ft}(2.1-\mathrm{m})$ wide by $10-\mathrm{in}$ ($25.4-\mathrm{cm}$) thick laminated wood bridge deck panels. For each test, four panels were used to construct a simulated bridge $72 \mathrm{ft}(21.9 \mathrm{~m})$ in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck, according to the instructions given by the manufacturer. Details of the system are shown in figure 1.

Test WB-1. Small sedan. The purpose of this test was to investigate the dynamic interactions of a small car with the bridge rail and curb. The goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The vehicle used in the test was a 1982 Volkswagen Rabbit. The gross test weight, including the dummy and instrumentation, was $1983 \mathrm{lb}(900 \mathrm{~kg})$. Figures 7a and 7 b contain photographs of the barrier and test vehicle.

Figure 3a. Natchez Trace bridge rail.

RAL AND POST DETALS
SCME, $1=10=0$:

Figure 3b. Natchez Trace bridge rail (continued).

CURB AND RAR SECTION
$\operatorname{sCNE} 11^{1 /-0^{\circ}}$

Figure 3c. Natchez Trace bridge rail (continued).

Figure 4a. Aluminum Tri-Rail bridge rail with sidewalk.

Figure 4b. Aluminum Tri-Rail bridge rail with sidewalk (continued).

Modified Kansas Corral Bridge Rail.
Strength analyses were performed on this system prior to testing to ensure that this design is equal to or superior to the previously tested Modified Kansas Corral. In addition, a computer simulation was performed to provide insight into vehicle stability while impacting this profile. After reviewing this information, it was determined that this design would perform satisfactorily with no modifications and it was correspondingly evaluated by crash test.

Natchez Trace Bridge Rail.

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. No modifications were recommended for this system. This was not confirmed because no full-scale tests were performed.

Aluminum Tri-Rail Bridge Rail With Sidewalk.

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. Because of limited modeling capabilities of the simulation program, additional review was performed based on guidelines provided in reference 3. From figure 5, this system indicates a high snagging potential. A blockout is recommended for the upper two rails to reduce this potential. This is shown in section 2-c. Full-scale crash tests were not performed on this design.

b. Analyses Conducted

Three types of analyses were performed during this study: strength, computer simulation, and wheel snagging using graphs.

Strength.

Elastic analyses were conducted on the Modified Kansas Corral bridge rail using the BRIDGE program (3) and the yield line analyses used by Hirsch and Bronstad. $(4,5)$ Results from these were compared with the same analyses of the Modified Kansas Corral bridge rail that was tested and reported in reference 3. In all cases, the Western Bridge Rail was equivalent or stronger than the tested rail.

Figure 5. Graphic determination of snagging potential.

Computer Simulation.

Computer simulations were performed on the Modified Kansas Corral bridge rail, the Natchez Trace bridge rail, and the Aluminum Tri-Rail bridge rail with sidewalk. NARD was the computer program that was used because of its three-dimensional capability. The impact conditions that were used correspond to Performance Level 1 from the 1989 AASHTO guidelines, the $1800-1 \mathrm{~b}$ ($817-\mathrm{kg}$) mini-sedan at $50 \mathrm{mi} / \mathrm{h}(80.5 \mathrm{~km} / \mathrm{h})$ and a 20 degree angle and the $5400-\mathrm{lb}$ (2450kg) pickup at $45 \mathrm{mi} / \mathrm{h}(72.4 \mathrm{~km} / \mathrm{h})$ and a 20 degree angle. The profiles of the railings were accurately modeled, while the rails themselves were simplified because of the limited number of barrier elements available in NARD and limited funding available for simulation. This limitation particularly affected the Aluminum Tri-Rail bridge rail. The results of the simulations are presented in appendix A and should be used sparingly to predict trends only. In all cases, the vehicles were smoothly redirected with no indication of vaulting.

Graphs.
Guides for wheel snagging were developed in reference 3. Figure 5 presents the design guideline. This was used to determine the potential of the Aluminum Tri-Rail bridge rail for snagging.

c. Final Designs

Every bridge rail reviewed, with the exception of the Aluminum Tri-Rail bridge rail, remained unchanged. The drawings presented in section B represent the final design. The Aluminum Tri-Rail was modified to include blockouts at the top two rails as shown in figure 6. This configuration was not submitted to full-scale crash evaluation.

Figure 6. Aluminum Tri-Rail recommended modification.

d. Test Procedures

Two bridge rail designs were evaluated as part of this contract, the Glulam bridge rail and the Modified Kansas Corral rail. For each design, two tests were conducted, one with an $1800-1 \mathrm{~b}$ ($817-\mathrm{kg}$) sedan and one with a $5400-1 \mathrm{~b}(2450-\mathrm{kg})$ pickup truck. The test matrix is presented in section 1.

Impact events were recorded from transducers mounted on the vehicle. Extensive high speed and real time film coverage also documented the barrier, vehicle and dummy behavior. Color slides and black and white photographs were taken before, during and after the test to provide additional documentation.

e. Full-Scale Crash Tests

(1) Glulam Bridge Rail

The Glulam bridge rail system was manufactured and provided by Wheeler Consolidated Industries, Inc., of St. Louis Park, Minnesota. The barrier system consists of $18-\mathrm{ft}(5.5-\mathrm{m})$ long by $7-\mathrm{ft}(2.1-\mathrm{m})$ wide by $10-\mathrm{in}$ ($25.4-\mathrm{cm}$) thick laminated wood bridge deck panels. For each test, four panels were used to construct a simulated bridge $72 \mathrm{ft}(21.9 \mathrm{~m})$ in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck, according to the instructions given by the manufacturer. Details of the system are shown in figure 1 .

Test WB-1. Small sedan. The purpose of this test was to investigate the dynamic interactions of a small car with the bridge rail and curb. The goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The vehicle used in the test was a 1982 Volkswagen Rabbit. The gross test weight, including the dummy and instrumentation, was 1983 lb (900 kg). Figures 7 a and 7 b contain photographs of the barrier and test vehicle.

Figure 7a. Test WB-1 pre-test details.

Figure 7b. Test WB-1 pre-test details (continued).

Test results are summarized in figure 8. Impact conditions were 59.2 $\mathrm{mi} / \mathrm{h}(95.3 \mathrm{~km} / \mathrm{h})$ at a 20.0° impact angle. The vehicle impacted the barrier 29 inches downstream of post 5 . The vehicle remained in contact with the barrier for $12.5 \mathrm{ft}(3.8 \mathrm{~m})$ before redirection at a -12.0° angle. During the impact sequence, the right front tire/wheel became engaged between the top of the curb and the bottom of the rail. Measurements of the tire/wheel path indicated a maximum of 5 in (13 cm) of lateral engagement. Since the curb is 12 in (30.5 cm) wide, there was no propensity for the wheel to snag on a post during impact.

Figure 8. WB-1 small sedan test results.

No significant pitch, roll or yaw was noted during impact and redirection. The vehicle came to rest $140 \mathrm{ft}(43 \mathrm{~m})$ downstream of the impact point and $50 \mathrm{ft}(15 \mathrm{~m})$ out from the barrier plane. The vehicle brakes were applied at approximately $100 \mathrm{ft}(30 \mathrm{~m})$ after impact. Table 2 presents the after impact vehicle trajectory.

Table 2. After impact vehicle trajectory, test WB-1.

Location'
0

Distance ${ }^{2}$

10
20
30
40
50
60
70
80 90 100

0
-0.2
-0.2
1.5
3.3
5.2
9.0
10.5
12.8
16.1
19.8
24.5
${ }^{1}$ Distance measured in the downstream direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.

All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

Maximum dynamic barrier deflection observed from the overhead data camera was 6.3 in (16.0 cm). Measurements of the barrier after the test showed a maximum of 1.5 in (3.8 cm) permanent deflection. Maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations from transducer data were -5.0 g 's (longitudinal) and 7.6 g 's (lateral). These results are exhibited in table 3.

Table 3. Permanent barrier deflections, test WB-1.

Post/Location
3
4
5
6
7
8
9
10
11

Deflection
0.3
0.4
0.5
0.8
1.5
1.3
0.8
0.4
0.2

All dimensions are in inches. 1 in $=2.54 \mathrm{~cm}$

Figures 9a through 9c present photographs of damage to the vehicle and barrier. Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of post 3 to post 9 with a maximum separation of $0.5 \mathrm{in}(1.3 \mathrm{~cm})$ on the top surface of the deck, approximately $3 \mathrm{ft}(0.9 \mathrm{~m})$ downstream from post 6. Maximum separation observed on the bottom surface of the deck was 0.1 in (0.3 cm). Several drive spikes in the impact affected area of the deck showed evidence of minor pullout.

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The windshield was cracked because of a pillar deformation. Both right side tires were blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Measurements of vehicle damage are given in table 4.

Figure 9a. Test WB-1 post-test details.

Figure 9b. Test WB-1 post-test details (continued).

Figure 9c. Test WB-1 post-test details (continued).

Table 4. Vehicle damage measurements, test WB-1.

Before Test			After Test
			Crush
L	52	52	Not Applicable
C-1	2.0	2.0	0.0
C-2	0.0	5.6	5.6
C-3	0.0	7.5	6.0
C-4	0.0	10.0	7.5
C-5	3.0	12.1	7.0
C-6	4.0		8.1

Maximum crush of 12.0 at a location of 15.0 to the right of vehicle centerline.

All dimensions are in inches. $1 \mathrm{in}=2.54 \mathrm{~cm}$

Test WB-2. Pickup truck. The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The barrier selected was the same as that used in test WB-1. However, one deck panel with curb/rail was replaced in the impact area to ensure system integrity. The vehicle used was a 1984 Ford Fl50 pickup truck. The gross test weight, including the dummy and instrumentation, was 5419 lb (2458 kg). Figures 10a and 10b contain photographs of the barrier and test vehicle.

Test results are summarized in figure 11. Impact conditions were 47.5 $\mathrm{mi} / \mathrm{h}(76.4 \mathrm{~km} / \mathrm{h})$ at a 20° impact angle. The vehicle impacted the barrier midway between post 5 and 6 . The vehicle remained in contact with the barrier

Figure 10a. Test WB-2 pre-test details.

Figure 10b. Test WB-2 pre-test details (continued).

w

Tust Mo. We-2	Angle - degrees
Teat Dete . Sept. 27, 1988	Impact . 20
Inetelletion Length . ft [n] 72 [22]	Exit . - 4.9
	Occupent Impect Velocity - ft/e [(N/e]
leneth - ft tol 18.0 [5.5]	Forward (eccel) $8.1[2.51$
Maximm Defiections - in. [cm]	Leteral (eccel) -17.2 [-5.2]
Permenent . 2.3 [5.8)	Occupent Ridedown Acceleretions - ${ }^{\prime}$'s
Oymalc 8.5 [21.6]	forward (accel) -1.7
Hent	Lateral (accel) . 6.9
Detalle of the peste, blockouts, curb, and deck are included in figure 11.	Maximm 50 we Avg Accelerotione - e's
	Longi tudinal (eccel) -3.2
Valicle 1984 ford F150 Pickup	Leteral (eccel) . 5.2
nees - If tkal	Vehicle Dumage
Teat Inertia 5254 [2303]	TAD . 01-FR-4
Onny . 165 [75]	Vol . 01fnees
Crees Test Welght 5619 [2658]	
epped - mi/h [kivh 47.5 [76.4]	

Figure 11. WB-2 pickup truck test results.
for $15.0 \mathrm{ft}\left(4.6 \mathrm{~m}\right.$) before redirection at an angle of -4.9°. The vehicle showed no tendency to snag on the curb or posts during the impact sequence. No significant pitch, roll or yaw was noted during impact and redirection. The vehicle came to rest $130 \mathrm{ft}(40 \mathrm{~m})$ downstream of the impact point and 48 $\mathrm{ft}(15 \mathrm{~m})$ out from the barrier plane. The vehicle brakes were applied at approximately $100 \mathrm{ft}(30 \mathrm{~m})$ after impact. Table 5 presents the vehicle trajectory after impact.

Table 5. After impact vehicle trajectory, test WB-2.

Location $^{\text { }}$	Distance 2
0	0
10	-0.1
20	0.2
30	1.5
40	2.0
50	3.4
60	1.4
70	0.0
80	-3.0
90	-6.1
100	11.2

${ }^{1}$ Distance measured in the downstream direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.

All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

Maximum dynamic barrier deflection observed from the overhead data camera was 8.5 inches (21.6 cm). Measurements of the barrier after the test, listed in table 6, show a maximum permanent deflection of 2.3 in (5.8 cm). Maximum 50 ms average accelerations from transducer data were -3.2 g 's (longitudinal) and 5.2 g 's (lateral).

Table 6. Permanent barrier deflections, test WB-2. Post/Location

Deflection

3	0.5
4	0.8
5	1.0
6	1.5
7	2.3
8	2.3
9	1.5
10	1.0
11	0.5

All dimensions are in inches. $1 \mathrm{in}=2.54 \mathrm{~cm}$

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The windshield remained intact, and the right front tire was blown out during impact. The tire remained on the wheel during redirection, but became detached during subsequent vehicle retrieval from the runout path. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 7.

Table 7. Vehicle damage measurements, test WB-2.

	Before Test	After Test	
			Crush
L	58	58	Not Applicable
$C-1$	0.4	0.3	-0.1
$C-2$	0.8	3.3	+2.5
$C-3$	0.0	2.5	+2.5
$C-4$	0.0	4.0	+4.0
$C-5$	0.0	7.1	+7.1
$C-6$	1.5	11.5	+10.0

Maximum crush of 15.8 at a location of 25 to the right of vehicle centerline.

All dimensions are in inches. 1 in $=2.54 \mathrm{~cm}$

Figures 12a and 12 b present photographs of damage to the vehicle and barrier. Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of post 3 to post 9 with a maximum separation of $0.8 \mathrm{in}(2.0 \mathrm{~cm})$ on the top surface of the deck about $3 \mathrm{ft}(0.9 \mathrm{~m})$ downstream from post 6. Maximum separation observed on the bottom surface of the deck was 0.1 in (0.3 cm). Several drive spikes in the impact affected area of the deck showed evidence of minor pullout.

Figure 12a. Test WB-2 post-test details.

Figure 12b. Test WB-2 post-test details (continued).
(2) Modified Kansas Corral Bridge Rail

The Modified Kansas Corral bridge rail consisted of concrete posts, rails and a 6 in (15 cm) curb, and was constructed on a simulated bridge deck. The total length of the system was $69 \mathrm{ft}(21 \mathrm{~m})$. Details of the system are shown in figure 2.

Test KM-1. Small sedan. The purpose of this test was to investigate the dynamic interactions of the small car with the bridge rail and curb. The goals for this test were: (l) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

The vehicle used in this test was a 1982 Honda Civic. Gross test weight, including the dummy and the instrumentation, was 1990 lb (902 kg). Figures 13a and 13b contain photographs of the barrier and test vehicle.

Figure 13a. Test KM-1 pre-test details.

Figure 13b. Test KM-1 pre-test details (continued).

Test results are summarized in figure 14. Impact conditions were 51.0 $\mathrm{mi} / \mathrm{h}(82.0 \mathrm{~km} / \mathrm{h})$ at a 20.5° impact angle. The vehicle impacted the barrier midway between posts 7 and 8 . The vehicle remained in contact with the barrier for $13.8 \mathrm{ft}(4.2 \mathrm{~m})$ before redirection at a -3.7° angle. During the impact sequence, the right front tire/wheel became engaged between the top of the curb and the bottom of the rail, with the wheel hub contacting post 8. Although post 8 exhibited minor gouging, observation of the test film showed no significant snag potential.

항

Figure 14. KM-1 small sedan test results.

The vehicle remained stable during impact and redirection. It came to rest $150 \mathrm{ft}(46 \mathrm{~m})$ downstream of the impact point and $10.5 \mathrm{ft}(3.2 \mathrm{~m})$ out from the barrier plane. The vehicle brakes were not applied after impact. Table 8 presents the vehicle trajectory after impact.

Table 8. After impact vehicle trajectory, test KM-1.

Location'

0
10
20
30
40
50
60
70
80 90 100

Distance ${ }^{2}$

0
-0.2
-0.2
0.8
1.5
2.3
3.2
4.0
4.8
5.6
6.3
6.9
'Distance measured in the downstream direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.

All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

The barrier did not deflect during impact. The film data indicated maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations of -2.8 g 's (longitudinal) and 4.0 g s (lateral). Maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations from transducer data were 5.4 g 's (longitudinal) and 8.1 g 's (lateral).

Figures 15a and 15b show photographs of vehicle and barrier damage. Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging was noted on post 8 . Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered undamaged.

Figure 15a. Test KM-1 post-test details.

Figure 15b. Test KM-1 post-test details (continued).

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The right front tire was blown out during impact, and the A-frame was displaced rearward to the fender well. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 9.

Table 9. Vehicle damage measurements, test KM-1.

	Before Test	After Test	Crush
L	48	48	Not Applicable
C-1	1.3	4.0	2.7
C-2	0.0	2.8	2.8
C-3	0.0	-0.8	+0.8
C-4	0.0	8.8	8.8
C-5	0.3	8.5	8.2
C-6	0.3	10.0	9.7
Maximum crush of 10.5 at a location of 22.0 to the right of the vehicle centerline.			
All dimensions are in inches. 1 in $=2.54 \mathrm{~cm}$			

Test KM-2. Pickup truck. The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The barrier was the same as that used in test KM-1. The vehicle used was a 1984 Ford F150 pickup truck. Gross test weight, including the dummy and instrumentation, was 5419 lb (2458 kg). Figures 16 a and 16 b contains photographs of the barrier and the test vehicle.

Figure 16a. Test KM-2 pre-test details.

Figure 16b. Test KM-2 pre-test details (continued).

Test results are summarized in figure 17. Impact conditions were 46.6 $\mathrm{mi} / \mathrm{h}(74.9 \mathrm{~km} / \mathrm{h})$ at a 20.0° impact angle. The vehicle impacted the barrier $0.8 \mathrm{ft}(0.2 \mathrm{~m})$ downstream of post 7 . The vehicle remained in contact with the barrier for $15.0 \mathrm{ft}(4.6 \mathrm{~m})$ before redirection at a -2.4° angle. The vehicle showed no tendency to snag on the curb or posts during the impact sequence. No significant pitch, roll or yaw was noted during impact and redirection.

Figure 17. KM-2 pickup truck test results.

The vehicle came to rest $190 \mathrm{ft}(58 \mathrm{~m})$ downstream of the impact point and $35 \mathrm{ft}(11 \mathrm{~m})$ out from the barrier pl ane. The vehicle brakes were applied at approximately $130 \mathrm{ft}(40 \mathrm{~m})$ after impact. Table 10 present the vehicle trajectory after impact. The barrier did not deflect during the impact. Film data indicated maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations of -2.7 g 's (longitudinal) and 4.9 g 's (lateral). Maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations from transducer data were -3.4 g 's (longitudinal) and 8.8 g 's (lateral).

Table 10. After impact vehicle trajectory, test KM-2.

Location ${ }^{1}$
0
10
20
30
40
50
60
70
80
90
100

Distance ${ }^{2}$
0
-0.3
1.0
2.3
2.4
3.3
4.3
5.2
6.3
7.5
8.8
'Distance measured in the downtown direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.

All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

Figures 18a and 18b present photographs of damage to the vehicle and barrier. Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging from wheel contact was noted on the lower edge of the rail in the impact area. Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered undamaged.

Figure 18a. Test KM-2 post-test details.

Figure 18b. Test KM-2 post-test details (continued).

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The front bumper was deformed inward at the impact area. The right front tire was blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are listed in table 11.

Table 1l. Vehicle damage measurements, test KM-2.

Before Test

L
C-1
C-2
C-3
C-4
C-5
C-6

56

2.0
1.0
0.0
0.0
1.0
2.0

After Test
56
3.8
5.5
4.0
3.5
15.6
14.0

Crush
Not Applicable
1.8
4.5
4.0
3.5
14.6
12.0

Maximum crush of 16.0 at a location of 25.0 to the right of vehicle centerline.

All dimensions are in inches. 1 in $=2.54 \mathrm{~cm}$

3. CONCLUSIONS AND RECOMMENDATIONS

Two bridge rail designs have been evaluated using full-scale tests employing both a small sedan and a pickup truck. Also, analyses of two additional designs have been conducted. Conclusions and recommendations based on the results of this effort are presented below.

a. Conclusions

The Glulam bridge rail and the Modified Kansas Corral bridge rail passed both the small sedan and the pickup truck full-scale tests. The rails did not fail in any of the tests, and the vehicle behavior during and after impact was, in all cases, acceptable. Analyses conducted on the Modified Kansas Corral bridge rail indicated that it was equally as strong or stronger than the Modified Kansas Corral rail tested in reference 3.

Computer simulation on the Modified Kansas Corral bridge rail and the Natchez Trace bridge rail indicated that the vehicle would be redirected with no vaulting.

The Aluminum Tri-Rail bridge rail has a high snagging potential according to guidelines developed in reference 3.
b. Recommendations

Because the Modified Kansas Corral and Glulam bridge rail designs passed the full-scale tests, they should both be certified as acceptable for use on Federal Lands highways.

Based on the analyses conducted, the Natchez Trace bridge rail should be tested in its current design to Performance Level l of the 1989 AASHTO guide specifications.

The Aluminum Tri-Rail bridge rail should be modified as recommended and submitted for full-scale testing to Performance Level 1.

Figure 19a. Modified Kansas Corral bridge rail with $1800-1 b$ (817 kg) computer simulation results.

Figure 19b. Modified Kansas Corral bridge rail with $1800-1 \mathrm{~b}$ (817 kg) computer simulation results (continued).

Figure 20a. Modified Kansas Corral bridge rail with $5400-1 b$ (2450 kg) computer simulation results.

Figure 20b. Modified Kansas Corral bridge rail with 5400-1b (2450 kg) computer simulation results (continued).

Figure 2la. Natchez Trace bridge rail with 1800-1b (817 kg) computer simulation results.

Figure 21b. Natchez Trace bridge rail with $1800-1 \mathrm{~b}$ (817 kg) computer simulation results (continued).

Figure 22a. Natchez Trace bridge rail with $5400-1 \mathrm{~b}$ (2450kg) computer simulation results.

Figure 22b. Natchez Trace bridge rail with 5400-1b $(2450 \mathrm{~kg})$ computer simulation results (continued).

Figure 23a. Aluminum Tri-Rail bridge rail with sidewalk 1800-1b (817 kg) computer simulation results.

Figure 23b. Aluminum Tri-Rail bridge rail with sidewalk $1800-1 b$ (817 kg) computer simulation results (continued).

Figure 24a. Aluminum Tri-Rail bridge with sidewalk $5400-1 b$ (2450 kg) computer simulation results.

Figure 24b. Aluminum Tri-Rail bridge with sidewalk 5400-1b (2450 kg) computer simulation results (continued).

APPENDIX B: FULL-SCALE CRASH TEST REPORTS

TO: Mr. Charles McDevitt, P.E., FHWA
FROM: Ken Johnson
SUBJECT: Timber Bridge Rail Details

Transmitted herewith are the DRAFT calculations of the bridge rail. Please give me a call ((218) 927-3370) to help explain any of those areas which may not be clear.

Thank you,
WHEELER CONSOLIDATED, INC.

Kenneth Johnson

TYPICAL CROSS SECTION OF CURB AND RAR:

The indlicated bad of 17,700 pounds is the estimated maximum lateral load from a 1,800 pound vahicle traveling at 60 MPH and striking the rall at 20°.

TABLE NO. 1 (LOAD ON POST BOLT)

$$
P=\frac{17.700 \times C}{B}
$$

$\begin{gathered} \text { DECK } \\ \text { THICKNESS } m \text {. } \end{gathered}$	$\begin{gathered} \text { DMENSION } \\ B=29(T+85) \end{gathered}$	dimension A-B-825	$\begin{gathered} \text { वMENSION } \\ c-20.35^{\prime} * B \end{gathered}$	LAD ONPOST BOLT REST. - P
16	1217	192	\$255	4,341
12	13.50°	525.	3380	4420
14	14.88	0.58	$3521{ }^{-}$	42024
16	16.15	782	36.55	40,008
18.	1750	225	3785	3 Sas

NOTE: The $14{ }^{2}$ diameter by 25° Oome Head 8ok connecting the rail poat to the curb has a Root Area $\alpha 0.890$ sq in and a Tensile Stress Area of 989 sq in. The minimum utbinate stress for A 325 in applied tension is 120.000 ps (25 to t"dia bolla). The minimum utimate stess for A 325 in applied tension is 105,000 pri (21 " dial boiti) The minimum ulimate stress for A 307 in applied tension is 60,000 pai
Alowable load based on Tensje Stess drea $=.999 \times 105,000=101.173$ pouncte.
Afowatle load based on Tensic Sbress frea $=.989 \times 80,000=58,140$ pounds

URTMATE UNT STRESSES:

Ref. ubinste strese valies fom page 4-15. wooo Handback. Faresl Procuct Leboratory.
Specie - Douglas-if
Modulus of rupture $\left(F_{b}\right)=12,800 \mathrm{psi}$
Modulus of elasticity $(E)=1,970,000 \mathrm{psi}$
Compresion parallel to grain, max. crushing strength $=7,260$ psi Compression perpendicular to grain, at portional IImit ($F_{G} \mid=870$ psi Shear parallel to graln, max. shearing strength $\left(F_{v}\right)=1,380 \mathrm{psi}$

RARING DESKGN:

$17,700 \mathrm{lbs}$.

EENDANG STRESS COMPUTATIONS:

$$
\begin{aligned}
& \text { Maximum moment }=M=\frac{13 P \mathrm{~L}}{64}=\frac{13 \times 17.700 \times 6 \times 12}{84}=258,883 \mathrm{in} \text {-lbs. } \\
& \text { Section modulus }=S=\frac{b 6^{2}}{6}-\frac{10.75 \times 8^{2}}{6}=84.5 \mathrm{~m}^{3} . \\
& f_{0}=\frac{258,863 \mathrm{in} \text {-ibs. }}{64.5 \mathrm{n}^{3}}=4,013 \mathrm{pst}<12,800 \text { ps oK }
\end{aligned}
$$

HOPRONTAL SHEAR
Check with losd at $3 \mathrm{~d} .=1 / 4 \mathrm{~L}=1.5$ from support
$V=R=\frac{17,700 \times 4.5}{6}=13.275 \mathrm{Abs}$.

POST DESKGNE.
Check bending moment at $11 / 4^{4}$ bolt hole.
Maximum moment $=M=17,700 \times 20.38^{\prime \prime}=360,726$ in-lbs.
Net section of post $=8^{\prime \prime}-11 / 4^{\prime \prime}=63 / 4^{\prime \prime}$
Section modulus $=S=\frac{b d^{2}}{6}=\frac{6.75 \times 12^{2}}{6}=162 \mathrm{in}^{3}$.

$$
P_{b}=\frac{M}{S}=\frac{360,726 \text { in-lbs. }}{162 \text { in. }^{3:}}=2,227 \text { psi. }<12,800 \text { psi OK }
$$

HOPEZONTAL SHEAR:

$V=17,700 \mathrm{lbs}$.
$f_{v}=\frac{3 V}{2 b d}=\frac{3 \times 17,700}{2 \times 8 \times 12}=277$ psi $<1,380$ OK
LOAD ON $11 \mu^{\circ}$ POST BOLT:
Ultimate unit stress for A 325 Steel bolt (1.25" dia.) in tension $=105,000$ psi.
Load on bolt (from sheet 1 of 16 sheets) $=47,341$ lbs.
Net section required $=\frac{47,341 \mathrm{lbs}}{105,000 \mathrm{psi}}=0.45 \mathrm{sq}$. in
Tensile Area of 1 1/4" bolt $=0.969 \mathrm{sq} . \mathrm{in}$. (AlSC _ $^{\text {8th. Ed., page 4-141) }}$

WASHER DESKGN FOR POST BOLT:

Try 6" $\times{ }^{\prime \prime}$
$\frac{47,341 \mathrm{lbs} .}{48 \mathrm{sq} . \mathrm{in} .}=986 \mathrm{psi}>870 \mathrm{psi}$ NOT OK

CUAB TO FLOOR SPUT RANG CONNECTIORS:

Design ValuerUlimate Value $=4.0$ to 4.5 (page $7-18$ WOOO Handbook)

1. Seasoned lumber
2. Angle of load to grain $=90^{\circ}$.
3. Group "B" species
4. Over $3^{\prime \prime}$ thick both faces

Allowable load on $4^{\prime \prime}$ split ring connector and 34° bolt $=3 ; 360 \times 4=13,440 \mathrm{ibs}$.
Number of bolts required $=\frac{V}{\text { Anlowabre }}=\frac{17,700}{13,440}=1.32$ Bolts
Use 4 bolts, two on each side.

CURB TO FLOOR BOLTS:

Check bolts in tension, use ASTM A 325 Bolts
$\frac{17,700 \mathrm{lbs} . \times 20.38 \mathrm{in} .}{6 \mathrm{ln}}=60.121$ pounds to be resisted by botts
Tensile Stress Area for $3 / 4^{\circ}$ dlameter bolt $=0.334 \mathrm{sq}$. m .
Allowable load for $3 / 4^{\prime \prime}$ dlameter bolt $=120,000 \times 0.334=40,080 \mathrm{lbs}$. per bo:

TYPICAL CROSS SECTION OF CURB AND RAIL

CHECK WITHDAWAL FORCES EN DECK:
Compute withdrawal resistance of $3 / 4^{\circ} \times 30^{\circ}$ Drive Splkes

$$
P_{w}=\text { Ultimate withdrawal resistance } \quad \text { w000 Handbook page } 7-8
$$

$P_{w}=6,600 \times G^{2} \times D \times L$ Where $G=$ Specific gravity $=.49, D=$, Diameter $=.75^{\circ}$
$P_{w}=6,600 \times .49^{2} \times .75 \times 1=1,188 \mathrm{jbs}$ fin. Uitmate Valua

$$
P_{w}=1,188 \times(6+17+17)=47,520 \text { pounds }>17,700 \text { pounds OK }
$$

Compute withdrawal resistance of $3 / 8^{\prime \prime} \times 15^{\circ}$ Deck Dowels $P_{w}=$ Ultimate withdrawal resistance WOOD Hanobook agge $7-6$.
$P_{w}=8,600 \times G^{2} \times D$ Where $G=$ Specific gravity $=.49, D=$, Diameter $=.375^{\prime \prime}$
$P_{w .}=6,600 \times .49^{2} \times .375 \times 1.0=594$ Ibs.An. UtimateVakue.

TABLE NO. 2 (DECK RESISTANCE TO BENDING MOMENT):

	TOTA MOMENT.	RESISTNG MOMENT		TOTAL RESISTING MOMET. intor.
DECK THCKNESS n	TO BERESISTED (T*24.63p inthe	$\begin{aligned} & \text { FAOADDOWELS } \\ & \text { EF \& } 12 \times 4,158 \\ & \text { inte } \end{aligned}$	$\begin{aligned} & \text { FPOM DPIVE SPIKES } \\ & \text { s I } 0,4 \times 40 \times 1,166 \text { } \\ & \text { ntbe. } \end{aligned}$	
10	869,751.	498900	712:000	1,211,780
$12 \cdot$	710,151	598,75	658300	1,454,112
15^{*}	754,581.	6sasta	997830	1,696,464
16°	789.551	79835	1,140,500	1,908816
15.	825,551	890j20	1202000	2181,968

TYPICAL CPOSS SECTION OF CURB AND RAHL

The indicated load of 32,000 pounds is the estimated maximum. lateral load from a 5,400 pound vehicle travelling at 60 MPH and striking the rall at 20° :

TABLE NO. 1 (LOAD ON POST BOLT)

$\begin{aligned} & \text { DECX } \\ & \text { THICKNESS (Tl } \end{aligned}$	$\begin{gathered} \text { DIMENSION } \\ B=25(T+8.25) \end{gathered}$	oImension $A=8-8.25$	$\begin{aligned} & \text { OMENSION } \\ & c=20.35 * B \end{aligned}$	LOAD ON POST BOLT ABS.J. P
16	1217	195	\$258*	05.588
12	1250**	525	$3888 \cdot$	80,308
$1{ }^{\circ}$	1485	6.58	3521-	75,970
16.	14.17*	7.58	36.55	72331
15	1750'	225	9785:	69,286

NOTE. The 144^{-}-dancter by 26^{-}Done Head Bet cornecting the rat post to the curb has a RoolA Aca of 0.890 sq in and a Tensie Sress Area of 96959 in
 The minimuru ufimate stess for A 325 in appled tension is 105,000 psii (${ }^{2}$) I"dia boll The minimum ulimate stetess for. A 307 in appfed tensionis 80,000 pai. Allwable load based on Tenaje Svess Area $=.969 \times 105,000=101,175$ pounde. Allowbe load based on Tenade Sress frea - $.969 \times 80.900-58,140$ pounds.

TYPICAL CROSS SECTION OF CURB AND RAI
TABLE NO. 2 (DECK RESISTANCE TO BENDING MOMENT):

	TOTAL MOMEST	RESISTNG MOMENT		TOTA RESISTING MOMET nts
$\begin{aligned} & \text { DECK } \\ & \text { THCKNESS } \\ & \text { in } \end{aligned}$	TO BE RESISTED (0+28.63) intbe	$\begin{aligned} & \text { FPOM OOWELS } \\ & \text { E F P. } 12 \times 4,158 \\ & \text { inthe } \end{aligned}$	$\begin{aligned} & \text { FROM DRIVE SPIKES } \\ & \text { I }(\pi / 2) x 40 \times 1,18 a y \\ & \text { inte } \end{aligned}$	
10°	1239,160	498,960	712100	1211,780
12	1,900,360	598,752	855,30	1.454,112
14*	1,384, 360	698544	997920	1,696,464.
16	1,420,160	798,30	1,140,480	1,958816
15	1,492,160	680128	1293090	2101,368

ELEVATION VIEW
 CURB AND SCUPPER
 ASSEMBLY DETAIL

Prefab Timber Deck Panals
NOTE:
The prefabricated deck panels to be dowel.
iaminated using $3 / 8^{\prime \prime} \times 15^{\prime \prime}$ galvanized dowels.

DESIGN NOTES:
Rail posts spaced maximum of 8 heet
Tabulated design values for the strength properties of the timber components are to be modilied where appropriate using Duration-of-Load factor (1.65) itor 5 arinute loading and horizontal shear adjustment factor of 1.67.

TYPYCAL CROSS SECTION OF CURB AND RAR

The indicated load of 60,500 pounds is the estimated maximum. lateral load from a 18,000 pound vehicle travelling at 50 MPH and striking the rall at 20° with center of mass $49^{\prime \prime}$ above bridge deck.

TABLE NO. 1 (LOAD ON POST BOLT)

$$
P=\frac{72.000 \times C}{B}
$$

$\begin{gathered} \text { DECK } \\ \text { THCKNESS } \\ \text { O: } \end{gathered}$	$\begin{aligned} & \text { DOMENSION } \\ & B-23 T=8.25: \end{aligned}$	DIMENSION A-8-825	$\begin{gathered} \text { DMENSION } \\ c=20.35^{\prime}+B \end{gathered}$	LONO ON POST EOLT IBSIT-P
10°	1217	3.97	5255	192572
12	1250'	525.	$3085{ }^{-}$	180898
$1 \times$	14.50	6.56	3521^{-1}	170,94
$15 \cdot$	18.15	798	30.55	102748
15	1750'	225	97.80.	15580

NOTE: The 1 UT dameter by 20° Dorne Head Boti conmecting the rail pout to the curb has a Roockres $o f 0.890$ sq in and a Tensie Stees Areat of 969 a 4 in
The minimum ulimate scess or A 325 in applied trasion in 120,000 pei ($25^{\circ} \mathrm{b}$ t" din bota)

The rimimum wimate steses for A 307 in sppled escion is 60.000 pei.
Anowable loed besed on Tenuie Stress Area - $969 \times 105,000=101,175$ pounche.
Alowable bed beset on-Tensie Stess Aree -. 961 \& 80.000 - 58.140 poutb

U TTMATE UNIT STFESSES:

Ref. Uninato stres vares trom page 4-13. wooo Hendbock. Farest Priacuct Laborrtary.

Specle - Douglas-ifr
Modulus of rupture (F_{b}) $=12,800 \mathrm{ps}$:
Modulus of elastlcity $(E)=1,970,000$ psi
Compresion parallel to grain, max. crushing strength $=7,260 \mathrm{psi}$
Compression perpendicular to grain, at portional llmit (F_{c}) $=870$ psl Shear parallel to grain, max. shearing strength. $\left(F_{v}\right)=1,380$ psi

RAR ANG DESKGE:

BENDNG STPESS COMPUTATIONS:

$$
\begin{aligned}
& \text { Maximum moment }=M=\frac{13 \mathrm{PL}}{64}=\frac{13 \times 72,000 \times 6 \times 12}{64}=1,053,000 \mathrm{in} \text {-ibs. } \\
& \text { Section modutus }=S=\frac{12 t^{2}}{6}=\frac{10.75 \times 8^{2}}{6}=64.5 \mathrm{in}^{3} \\
& \text { f. }=\frac{1,053,000 \mathrm{in} \text {-ibs. }}{64.5 \mathrm{~m}^{3}}=16,326 \mathrm{pst}>12,800 \mathrm{ps} \text { NOT OK }
\end{aligned}
$$

HORZONTA SHEAR:
Check with load at 3 at $=1 / 4 \mathrm{~L}=1.5$ from support.

$$
V=R=\frac{72,000 \times 4.5}{6}=54,000 \mathrm{Hbs}
$$

Specie - Douglas-if
Modulus of rupture (F_{b}) $=12,800 \mathrm{pss}:$
Modulus of elasticity $(E)=1,970,000$ psi
Compresion parallel to grain, max. crushing strength $=7,260 \mathrm{psl}$
Compression perpendicular to grain, at portional limit $\left(F_{c}\right)=870$ psi
Shear parallel' to grain, max. shearing strength. $\left(F_{v}\right)=1,380 \mathrm{psl}$

RARANG DESGGE:

72,000 lbs.

BENDNG STRESS CONPUTATIONS: (formula from ASGC. 8th Ed, pege 2-124)

$$
\begin{aligned}
& \text { Maximum moment }=M=\frac{13 \mathrm{PL}}{64}=\frac{13 \times 72.000 \times 8 \times 12}{64}=1,053,000 \mathrm{~m}-\mathrm{Wb} . \\
& \text { Section modulus }=S=\frac{\mathrm{bo}^{2}}{8}-\frac{10.75 \times 8^{2}}{8}=64.5 \mathrm{mi}^{3} \\
& t_{0}=\frac{1,053,000 \mathrm{in} \text {-hbs }^{64.5 \mathrm{~m}^{3}}=16,326 \text { pst } \geq 12,800 \mathrm{psi} \quad \text { NOT OK }}{}
\end{aligned}
$$

HOREONTAL SHEAR:
Check with load st $3 d^{\circ}=1 / 4 \mathrm{~L}=1.5$ from support
$V=R=\frac{72,000 \times 4.5}{6}-54,000 \mathrm{lbs}$

POST DESAGE.
Check bending moment at $11 / 4^{\prime \prime}$ bolt hola.
Maximum moment $=M=72,000 \times 20.38^{\circ}=1,467,360 \mathrm{in}$-lbs.
Net section of post $=8^{\prime \prime}-11 / 4^{\prime \prime}=63 / 4^{\circ}$
Section modulus. $=S=\frac{\text { bot }^{2}}{6}=\frac{6.75 \times 12^{2}}{6}=182 \mathrm{in}^{3}$.
$f_{b}=\frac{M}{S}=\frac{1,467,360 \mathrm{In}-\mathrm{lbs} .}{162 \mathrm{in}^{3}}=9,058$ psl. $<12,800$ pst $O K$
HOREZONTAL SHEARE
$V=72,000 \mathrm{ibs}$.

$$
f_{v}=\frac{3 V}{2 b d}=\frac{3 \times 72,000}{2 \times 8 \times 12}=1,125 p s l<1,380 \text { OK }
$$

LOAD ON 1 14" POST BOLT:

Ultimate unit stress for A 325 Stied bolt (1.25" dia.) in tension $=105,000$ psi.
Load on bolt (from sheet 11 of 16 sheets) $=192,572$ los.
Net section required $=\frac{192,572 \mathrm{lbs}}{105,000 \mathrm{psi}}=1.83 \mathrm{sq}$. in. >0.969 NOT OK!.
Tensila Area of 1 t/4 4° bolt $=0.969 \mathrm{sq}$. In. (AISC, 8th. Ed., paga 4-141)

WASHER DESKGN POR POST BOLT:

Try $6^{\circ} \times 8$:
$\frac{192,572 \mathrm{fbs}}{489 \mathrm{in}}=4,012 \mathrm{psi}>870 \mathrm{pst}$. NOT OK 48 sq . in.

CURB TO RLOCR SPIT RANG CONNECTIORS:

Design ValueNutmate Value $=4.0$ to 4.5 (page 7-18 WOOD Handbook)

1. Seasoned lumber.
2. Angle of load to grain. $=90^{\circ}$.
2 Group "B" specles
3. Over 3" thick both facess

Allowable load on $4^{\prime \prime}$ split ring connector and $34^{\prime \prime}$ bolt $=3,360 \times 4=13,440 \mathrm{ibs}$.
Number of bolts required $=\frac{V}{\text { Alowabre }}=\frac{42,000}{13,440}=3.13$ Bolts
Use 4. bolls; two on each stde.

CUPB TO RLOOR BOLTS:

Check bolts in tension , use ASTM A 325 Bolts
$72,000 \mathrm{tbs} \times 20.38 \mathrm{th} .244,560$ pounds to be resisted by bolls
6 m .
Tenslle Stress Area for $3 / 4^{\circ}$ dlameter bolt $=0.33454 \mathrm{in}$.
Allowable bad for 3.4° dlameter. bolt $=120,000 \times 0.334=40,080 \mathrm{lbs}$. per bolt

TYPTCAL CROSS SECTION OF CURB AND RALL
CFECK WTHARAWAL FOFCES N DECK:
Compute withdrawal resistance of $3 / 4^{\circ} \times 30^{\circ}$ Drive Spikes-

$$
P_{w}=\text { Ulimate withdrawal resistance } \quad \text { woOD Hanotboak asge } 7-8
$$

$P_{W}=8.600 \times G^{2} \times D \times L$ Where $G=$ Specific gravity $=.49, D=$, Diameter $=.75^{\circ}$
$P_{w}=8,800 \times .49^{2} \times .75 \times 1=1,188 \mathrm{fbs}$ An. Uitimata Vatua.

$$
P_{w}=1,188 \times(8+17+17)=47,520 \text { pounds }>42,000 \text { pounds OK }
$$

> Compute withdrawal resistance of $3 / 8^{\circ} \times 15^{\circ}$ Deck Dowats
> $P_{w}=$ Unimate withdrawal resistance. WOOD Handroat agge T-d:
> $P_{W}=6,600 \times G^{2} \times D$. Where $G .=$ Specific gravily $=.49, D=$. Diameter. $=.375^{\circ}$
> $\mathrm{F}_{\mathrm{w}}=0,800 \times .49^{2} \times .375 \times 1.0=594 \mathrm{hbs}$ /in. UnimateValua

TYPICAL CFOSS SECTION OF CURB AND RAL

TABLE NO. 2 (DECK RESISTANCE TO BENDING MOMENT):

DECK THCNNESS n	TOTAL HOMENT TO BERESISTED (T*20.83) ints	RESISTAGMOMENT.		TOTN RESISTNG MONET inthe
		$\begin{aligned} & \text { FPONDOWES } \\ & E \times R 12 \times 4.158 \\ & n \in \in \end{aligned}$		
10^{*}	2781,300	498900	712800	1,211,760
12	2925,580	598,752	855,380	1,454)12
15	3,009,360-	698,544	997,930-	1,698,464.
16	3,213,500	798359	1,140,460	1988816
$15 \cdot$	9357850	898.328.	1,289040.	2181,468

CROSS SECTION AT RAIL POST

NOTE:
All timber to be Douglas Fir. The stress grade as follows:

Rail Posts - Post and Timber, Dense Sefect Stuructural
Test No. WB-1
Test Date Sept. 21, 1988
Installation Length - ft [m] 72 [22]
BeamMember . . $6^{\prime \prime} \times 10-3 / 4^{n}$ laminated woodLength - ft [m] 18.0 [5.5]
Maximum Deflections - in. [cm]
Permanent 1.5 [3.8]
Dynamic
Post
Details of the posts, blockouts, curb, and deck are included in Figure 1.
Vehicle 1982 V. W. Rabbit
Mass - 1b [kg]
Test Inertia 1818 [825]
Dummy 165
165 [75]
Gross Test Weight 1983 [900]
Speed - mph [km/h] 59.2 [95.3]
Angle - degrees
Impact 20
Exit -12.0
Occupant Impact Velocity - fps [m/s]
Forward (acce1) -10.6 [-3.2]
Lateral (accel) -18.6 [-5.7]
Occupant Ridedown Accelerations - g's
Forward (accel) -0.7
Lateral (accel) 7.6
Maximum 50 msec Avg Accelerations - g's
Longitudinal (accel) -5.0
Lateral (accel) 8.5

```
Vehicle Damage
TAD . . . . . . . . . . . . . . \(01-F R-4\)
VDI . . . . . . . . . . . . . O1FREE6
```


TEST WB-1

Barrier Installation

The barrier evaluated in the test was a Glulam Prefabricated Bridge section. The barrier system consists of $18-\mathrm{ft}(5.49 \mathrm{~m})$ long by $7-\mathrm{ft}(2.1 \mathrm{~m})$ wide laminated wood bridge deck panels. The thickness of the deck panels used in this test was 10 in . $(25.4 \mathrm{~cm})$. For this test, 4 panels were used to construct a simulated bridge $72 \mathrm{ft}(21.9 \mathrm{~cm})$ in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck according to the manufacturer's instructions. Figure 25 presents details supplied by the manufacturer of the system.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the small car with the bridge rail and curb. Goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket, (2) the vehicle should remain upright throughout the event, and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1982 Volkswagen Rabbit. Gross test weight, including the dummy and instrumentation was $1983-1 \mathrm{~b}$ ($900-\mathrm{kg}$).

Performance

Impact conditions were $59.2 \mathrm{~m} / \mathrm{h}(95.3 \mathrm{~km} / \mathrm{h})$ and a 20 -degree impact angle. As shown in figure 26, the vehicle impacted the barrier 29 in. (73.7 cm) downstream of Post 5. The vehicle remained in contact with the barrier for $12.5-\mathrm{ft}$ [3.8-m] before redirection at a -12.0 degree angle. During the impact sequence the right front tire/wheel became engaged between the top of the curb and the bottom of the rail (see figure 27). Measurements of the tire/wheel path indicated a maximum of 5 in . (13 cm) of lateral engagement. Since the curb is 12 inches (30.4 cm) wide, there was no propensity for the wheel to snag on a post during impact. No significant pitch, roll, or yaw was noted during impact and redirection. The vehicle came to rest $140 \mathrm{ft}(43 \mathrm{~m})$
downstream of the impact point and $50 \mathrm{ft}(15 \mathrm{~m})$ out from the barrier plane. The vehicle brakes were applied at approximately $100 \mathrm{ft}(30 \mathrm{~m})$ after impact. Table 12 presents after impact vehicle trajectory. Maximum dynamic barrier deflection observed from the overhead data camera was 6.3 in (16.0 cm). Measurements of the barrier after the test, tabulated in table 13, showed a maximum of 1.5 in (3.8 cm) permanent deflection.

Maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations from transducer data indicated 50 m / s averages of -5.0 g 's (longitudinal) and 7.6 g 's (lateral). Figure 28 presents a summary of test results. Vehicle kinetics from onboard transducers is tabulated in Table 14. Plots of vehicle accelerations are presented in Figure 29. Table 15 presents occupant risk data derived from the on-board transducers.

Barrier Damage

Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of post 3 to post 9 with a maximum separation of $0.5 \mathrm{in}(1.3 \mathrm{~cm})$ on the top surface of the deck about $3 \mathrm{ft}(0.9 \mathrm{~m})$ downstream from post 6. Maximum separation observed on the bottom surface of the deck was 0.1 -in (0.3 cm). Several drive spikes in the impact affected area of the deck showed evidence of minor "pullout."

Vehicle Damage

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The windshield was cracked from A-pillar deformation. Both right side tires were blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 16.

Figure 25. Barrier construction details, test WB-1.

Figure 26. Sequential photographs during impact, test WB-1.

Figure 27. Sequential photographs as viewed from behind the rail, test WB-1.

\&

Angle - degrent
Exit 20
occupent Impect Velocity - ft/s [a/e] formard (eccel) .
Leterol (eccel)
$[-3.6[-5.2]$ $-10.6[-3.2]$Occupent Ridedown Accelerntions - g°
Formard (eccel) -0.7
leteral (eccel) 7.6
Maximin 50 a/s Avg Accelerstione - $9^{\prime 4}$ Longitudinal (aceel) -5.0
8.5
Vehicle Damest
vol 01-ft-4
01FREE

Figure 28. Summary of results, test WB-1.

Figure 29. Vehicle acceleration plots, test WB-1.

Table 12. After impact vehicle trajectory, test WB-1.

Location $^{\prime}$	Distance 2
0	0
10	-0.2
20	1.5
30	3.3
40	5.2
50	9.0
60	10.5
70	12.8
80	16.1
90	19.8
100	24.5

'Distance measured in the downstream direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle

Note: All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

Table 13. Permanent barrier deflections, test WB-1.	
Post/Location	Deflection
3	0.3
4	0.4
5	0.5
6	0.8
7	1.5
8	1.3
9	0.8
10	0.4
11	0.2
Note: All dimensions are in inches. $1 \mathrm{ft}=2.54 \mathrm{~m}$	

Table 14. Vehicle kinetics data, test WB-1.
TEST ID We-1
TEST OATE ….. 29-21-88
VEHICLE CLASS - I•TRNI
DPACT SFEED -- 36.83 FPS

VEHICLE KDETICS SUHTARY
NOTE: VALUES GRE DNSTANTRNEGUS AT TDE

TIME (S)	$\begin{aligned} & \text { ACCEL } \\ & \text { LONG. } \end{aligned}$	$\left(G^{\prime} S\right)$ LAT.	$\begin{gathered} \text { MEAD. ANG. } \\ \text { DEG } \end{gathered}$	$\begin{aligned} & \text { VELOC } \\ & \text { LONG. } \end{aligned}$	ITV(FPS) LAT.		. (F)
. 000	-. 30	- . 88	20.00	56.83	. 00	. ${ }^{0}$. 0
. 010	-. 97	1.14	13.96	86.85	-. 06	. 82	. 30
. 020	-3.04	-. 19	19.93	86.76	14	1.63	. 59
. 030	-4.71	11.21	20.00	86.15	1.18	2.44	88
. 040	-. 47	-5.51	19.95	85.24	2.65	3.25	1.15
. 050	-3.48	11.16	19.88	83.19	4.52	4.06	1.41
. 060	-8.73	10.11	19.69	81.03	6.82	4.85	1.64
. 070	-8.51	8.36	19.28	79.92	8.88	5.64	1.83
. 080	. 03	10.24	18.69	78.59	11.25	6.42	1.99
. 090	-2.93	5.23	17.84	77.51	12.16	7.19	2.12
. 100	-1.59	4.31	16.65	77.32	13.29	7.97	2.23
. 110	1.72	9.46	15.17	76.71	13.63	8.75	2.31
. 120	-4.60	5.69	13.19	76.27	12.84	9.52	2.37
. 130	-2.81	5.09	10.80	76.32	12.09	10.29	2.41
. 140	-5.22	. 46	9.16	75.67	11.05	11.06	2.42
. 150	5. 26	8.04	7.54	74.78	10.31	11.82	2.43
. 160	3.24	1.32	5.45	75.10	8.65	12.57	2.42
. 170	1.27	6.34	3.51	74.90	7.92	13.33	2.39
. 190	-1.87	4.03	1.69	73.26	6.24	14.07	2.36
. 190	4.26	1.37	-. 07	73.82	4.87	14.81	2.31
. 200	-. 30	. 68	-1.61	74.38	3.24	15.55	2.26
. 210	-1.08	3.67	-3.00	74.36	1.93	16.30	2.20
. 220	-. 30	-. 74	-4.32	74.09	. 28	17.04	2.14
. 230	. 20	-1.02	-5.54	74.37	-1.41	17.78	2.09
. 240	. 52	-. 19	-6.54	74.38	-3.07	19.52	2.03
. 250	-3.04	-2.39	-7.49	74.01	-4.23	19.26	1.97
. 260	-1.63	-. 97	-8.39	73.83	-5.66	20.00	1.92
. 270	-1.20	-. 24	-9.30	73.83	-6.96	20.74	1.87
. 280	1.95	. 27	-10.28	74.34	-8.08	21.48	1.82
. 290	-3.09	-1.38	-11.15	74.17	-9.21	22.22	1.76
. 300	. 43	-. 38	-12.01	74.02	-10.57	22.97	1.71
. 310	-1.37	-2.80	-12.78	74.10	-11.49	23.71	1.66
. 320	. 65	. 73	-13.65	73.75	-12.77	24.46	1.61
. 330	. 60	-1.06	-14.48	73.52	-13.90	25.20	1.86
. 340	1.27	-1.24	-15.31	73.41	-15.41	25.95	1.52
. 350	3.13	. 91	-16.14	73.23	-16.45	26.70	1.47
. 360	3.62	1.51	-16.97	73.13	-17.17	27.45	1.43
. 3.70	3.41	-1.66	-17.e3	72.73	-18.82	28.20	1.30
. 380	2.69	. 50	-18.65	72.77	-19.81	29.95	1.34
. 390	. 71	-. 15	-19.51	72.43	-31.13	29.70	1.29
. 400	. 93	-. 15	-30.30	71.97	-22.36	30.45	1.25
. 410	-. 02	-. 65	-21.19	71.69	-23.41	31.21	1.21
. 420	-. 08	-. 15	-21.95	71.52	-24.52	31.96	1.17
. 430	. 09	-. 28	-22.74	71.33	-25.53	32.72	1.13
. 440	-1.20	-1. 15	-23.52	70.99	-26.53	33.47	1.09
. 450	-1.70	-. 97	-24.30	70.57	-27.62	34.23	1.05

HIGHEST 50.0-MS AVB. ACCEL.
TPE (SEC)

	6'8	START	END
Lows.	-5.03	. 041	091
Lat.	8.49	. 045	09

Table 15. Occupant risk data, test WB-1.

OECUPANT RISK SUMTARY
NOTE: DISTANTANEOUS $10-\mathrm{MS}$ AVERAGE ACCELERATIONS

Table 16. Vehicle damage measurements, test WB-1.

	Before Test	After Test	Crush
L	52	52	Not Applicable
C-1	2.0	2.0	0.0
C-2	0.0	5.6	5.6
C-3	0.0	6.0	6.0
C-4	0.0	7.5	7.5
C-5	3.0	10.0	7.0
C-6	4.0	12.1	8.1

Maximum Crush of 12.0 at a location of 15.0 to the right of vehicle centerline.

Note: All dimensions are in inches. $1 \mathrm{in}=2.54 \mathrm{~cm}$

APPENDIX D: SUMMARY OF RESULTS, TEST WB-2
Test No. WB-2
Test Date Sept. 27, 1988Installation Length - ft [m] 72 [22]Beam
Member . . . $6^{n \prime} \times 10-3 / 4^{n}$ laminated woodLength - ft [m] 18.0 [5.5]Maximum Deflections - in. [cm]Permanent2.3 [5.8]
Dynamic 8.5 [21.6]Details of the posts, blockouts, curb, anddeck are included in Figure 1.
Vehicle 1984 Ford F150 Pickup
Mass - 1b [kg]
Test Inertia 5254 [2383]
Dummy 165 [75]Gross Test Weight 5419 [2458]
Speed - mph [km/h] 47.5 [76.4]
Angle - degrees
Impact 20
Exit -4.9
Occupant Impact Velocity - fps [m/s]
Forward (accel) 8.1 [2.5]Lateral (accel) -17.2 [-5.2]
Occupant Ridedown Accelerations - g's
Forward (accel) 1.7
Lateral (accel) 6.9
Maximum 50 msec Avg Accelerations - g's
Longitudinal (accel) -3.2
Lateral (accel) 5.2
Vehicle Damage
TAD 01-FR-4
VDI 01FREE6

TEST WB-2

Barrier Installation

The barrier evaluated in the test was a Glulam Prefabricated Bridge section. The barrier system consists of $18-\mathrm{ft}(5.49 \mathrm{~m})$ long by $7-\mathrm{ft}(2.1 \mathrm{~m})$ wide laminated wood bridge deck panels. The thickness of the deck panels used in this test was 10 in . (25.4 cm). For this test, four panels were used to construct a simulated bridge $72 \mathrm{ft}(21.9 \mathrm{~cm})$ in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck according to the manufacturer's instructions. Figure 30 presents details of the system supplied by the manufacturer. The barrier was the same as that used in test WB-1. One deck panel with curb/rail was replaced in the impact area to ensure system integretry.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system, (2) the vehicle should remain upright throughout the event, and (3) the vehicle aftertrajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1984 Ford F150 Pickup. Gross test weight, including the dummy and instrumentation was $5419-1 \mathrm{~b}$ (2458 kg).

Performance

Impact conditions were $47.5 \mathrm{~m} / \mathrm{h}(76.4 \mathrm{~km} / \mathrm{h})$ and a 20 -degree impact angle. As shown in figure 31, the vehicle impacted the barrier midway between Post 5 and 6. The vehicle remained in contact with the barrier for $15.0-\mathrm{ft}$ [4.6 m] before redirection at a -4.9 degree angle. The vehicle showed no tendancy to snag on the curb or posts during the impact sequence. No significant pitch, roll, or yaw was noted during impact and redirection. The vehicle came to rest 130 ft [40 m] downstream of the impact point and 48 feet [15 m] out from the barrier plane. The vehicle brakes were applied at approximately 100 feet [30 m] after impact. Table 17 presents after impact
vehicle trajectory. Maximum dynamic barrier deflection observed from the overhead data camera was 8.5 inches [21.6 cm]. Measurements of the barrier after the test, tabulated in table 18 , showed a maximum of 2.3 -inches $[5.8 \mathrm{~cm}$] permanent deflection.

Maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations from transducer data indicated 50 m / s averages of -3.2 g 's (longitudinal) and 5.2 g 's (lateral). Figure 33 presents a summary of test results. Vehicle kinetics from onboard transducers is tabulated in table 19. Plots of vehicle accelerations are presented in figure 34. Table 20 presents occupant risk data derived from the on-board transducers.

Barrier Damage

Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of Post 3 to Post 9 with a maximum separation of 0.8 in . [2.0 cm] on the top surface of the deck about $3 \mathrm{ft}[0.9 \mathrm{~m}$] downstream from Post 6. Maximum separation observed on the bottom surface of the deck was $0.1 \mathrm{in} .[0.3 \mathrm{~cm}]$. Several drive spikes in the impact affected area of the deck showed evidence of minor "pullout."

Vehicle Damage

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The windshield remained intact. The right front tire was blown out during impact. (Note: The tire remained on the wheel during redirection but became detached during subsequent vehicle retreivial from the run-out path.) Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 21.

Figure 30. Barrier construction details, test WB-2.

Figure 31. Sequential photographs during impact, test WB-2 (overhead view).

Figure 32. Sequential photographs, test WB-2 (view from downstream).

Table 17. After impact vehicle trajectory, test WB-2.

Location'
0
10
20
30
40
50
60
70
80
90
100

Distance ${ }^{2}$
0
-0.1
0.2
1.5
2.0
3.4
1.4
0.0
-3.0
-6.1
-11.2
${ }^{1}$ Distance measured in the downstream direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.

Note: All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

Table 18. Permanent barrier deflections, test WB-2.

Post/Location

3
4
5
6
7
8
9
10 11

Deflection
0.5
0.8
1.0
1.5
2.3
2.3
1.5
1.0
0.5

Note: All dimensions are in inches. $1 \mathrm{in}=2.54 \mathrm{~cm}$

$\stackrel{\bullet}{\circ}$

Figure 33. Summary of results, test WB-2.

Table 19. Vehicle kinetics data, test WB-2.
TEST ID .-..... we-E
TEST DATE ….. 09-27-88
VEHICLE ELASS - OTHER
IMPACT SPEED -. 69.67 FPS

UEHICLE KIJETICS SUMMARY
note: yalues are instantaneous at tite

TIME	ACCEL	. (G'S)	herd. ang.	VELOC	TV(FPS)	OISP. (F)	
(S)	LONG.	LAT.	DEG	LONG.	LAT.	x	Y
. 000	-. 73	. 47	20.00	69.67	. 00	. 00	0
. 010	-. 01	. 20	19.96	69.45	-. 08	. 65	24
. 020	-. 62	-. 08	19.90	69.31	-. 17	1.31	48
. 030	-. 17	-. 08	19.84	69.33	-. 26	1.96	71
. 640	. 39	. 43	19.78	69.27	-. 22	2.61	95
. OSC	. 05	. 57	19.76	59.40	-. 09	3.26	1.19
. 060	-. 17	. 38	19.74	69.31	-. 08	3.91	1.42
. 070	-. 68	. 61	19.72	69.30	-. 01	4.56	1.66
. 080	-2. 24	2.92	19.71	68.74	. 68	5.21	1.89
. 090	. 50	-. 31	19.74	68.12	1.23	5.86	2.11
. 100	. 05	. 57	19.87	67.75	1.65	6.50	2.32
. 110	1.57	-7.48	19.92	67.18	1.04	7.14	2.54
. 120	-1.74	5.08	19.85	66.64	1.50	7.78	2.76
. 130	-. 01	4.16	19.53	65.63	1.62	8.41	2.97
. 140	1.40	-. 03	18.99	64.69	1.75	9.03	3.17
. 150	-11.20	. 84	18.49	63.83	1.87	9.65	3.36
. 160	1.29	5.40	17.86	63.72	2.91	10.26	3.53
. 170	-5.21	7.20	17.22	62.99	3.85	10.88	3.69
. 180	-. 62	6.23	16.43	62.28	5.18	11.49	3.83
. 190	-4.59	2.73	15.61	51.18	5.66	12.10	3.95
. 200	-. 12	2.82	14.65	$60 . こ 4$	6.02	12.70	4.05
. 210	-3.25	5.13	13.55	59.46	6.32	13.30	4.14
. 220	-4.54	3.93	12.38	58.36	6.16	13.88	4.21
. 230	-. 68	. 11	11.12	57.68	5.99	24.47	4.27
. 240	-.68	2.59	9.74	57.71	5.70	15.05	4.32
. 250	-2.47	-4.92	9.27	57.80	4.89	15.62	4.35
. 260	3.43	-2.91	6.87	57.52	4.86	16.20	4.38
. 270	. 05	12.31	5.37	57.38	4.90	16.78	4.39
. 280	. 84	1.17	3.92	57.23	4.24	17.35	4.39
. 290	-2.02	-. 49	2.67	57.12	3.25	17.93	4.38
. 300	-. 62	-13.47	1.52	56.12	1.11	18.49	4.38
. 310	-4.03	-1.40	. 44	55.61	-. 98	19.05	4.39
. 320	1.52	7.24	-. 66	56.01	-2.03	19.61	4.41
. 330	-1.46	8.99	-1. 86	55.92	-1.98	20.17	4.42
. 340	-. 90	5.68	-2.82	56.38	-. 98	20.73	4.41
. 350	2.42	. 75	-3.34	56.37	-. 24	21.30	4.38
. 360	-4.82	1.67	-3.72	55.82	1.01	21.85	4.34
. 370	2.81	2.45	-4.00	55.37	1.82	22.41	4.29
. 380	1.12	1.90	-4.16	55.95	2.00	22.96	4.23
. 390	-1.96	-. 12	-4.38	55.69	2.35	23.52	4.17
. 400	-2.E2	-. 81	-4.66	55.27	2.19	24.07	4.10
. 410	-. 73	-. 63	-4.94	54.94	2.14	24.61	4.03
. 420	1.97	1.76	-5.05	55.08	2.26	25.16	3.96
. 430	-. 73	. 80	-5.10	55.06	2.33	25.71	3.89
440	-. 17	-. 12	-5.04	54.93	2.49	26.25	3.82
450	1.12	-2.23	-4.98	55.13	2.29	26.80	3.76
460	1.01	-. 81	-4.90	55.29	2.05	27.35	3.68
. 470	-1.63	-1.13	-4.92	55.19	1.84	27.90	3.61

hIGHEST 50.0-MS AUG. ACCEL.
TIPE (SEC)

	6'S	START	ENO
Lons.	-3.21	. 180	. 230
Lat.	5.23	. 152	. 202

Figure 34. Vehicle acceleration plots, test WB-2.

Table 20. Occupant risk data, test WB-2.

OCCLPANT RISK SUMTARY
NOTE: INSTANTANEOUS 10-MS AVERAGE ACCELERATIONS

$\begin{aligned} & \text { TME } \\ & (5) \end{aligned}$	ACCEL LONG	VEHIELE (6'5) LAT.	ANG. VEL (RAO/S)	$\begin{aligned} & \text { VEL. } \\ & \text { LONG. } \end{aligned}$	(FPS) LAT.		(F) LAT.
. 000	-. 73	. 47	-. 08	. ∞	. 00	. 00	. 00
. 010	-. 52	-. 17	-. 06	25	. 04	. ∞	. 00
. 020	-. 39	-. 02	-. 10	. 33	. 04	. 0	. ∞
. 330	-. 04	. 17	-. 09	. 42	. 05	. 01	. 00
. 040	. 24	. 38	-. 05	. 45	-. 02	. 01	. 00
. 050	. 19	. 39	-. 05	. 32	-. 17	. 02	. 00
. 060	-. 18	. 12	-. 03	. 44	-. 20	. 02	. ∞
. 070	-. 62	. 80	-. 02	. 48	-. 28	. 02	. 00
. 080	-2.30	2.76	-. 03	1.02	-. 99	. 03	-. 01
. 090	-2.03	. 09	. 15	1.93	-1.37	. 05	-. 02
. 100	-. 73	. 99	. 17	2.33	-1.64	. 07	-. 04
. 110	-1.92	-2.42	. 01	2.65	-1.07	. 09	-. 05
. 120	-2.14	2.45	-. 48	2.36	-1.98	. 12	-. 06
. 130	-2.02	3.16	-. 68	3.04	-2.64	. 15	-. 08
. 140	-2.67	2.26	-. 86	3.68	-3.57	. 17	-. 12
. 150	-1.71	3.08	-. 97	4.33	-4.39	. 21	-. 16
. 160	-2.60	4.94	-1.24	3.97	-6.38	. 25	-. 22
. 170	-2.44	6.35	-1.05	4.90	-7.97	. 29	-. 29
. 180	-E.55	5.79	-1.38	5.10	-10.43	. 34	-. 39
. 190	-3.75	4.00	-1.59	5.78	-12.13	. 38	-. 51
. 200	-2.71	4.24	-1.81	6.24	-13.83	. 43	-. 64
. 210	-4.06	4.20	-1.96	6.64	-15.56	. 48	-. 80
. 222	-1.46	3.23	-2. 12	7.27	-16.96*	. 53	-. 97 *
. 230	-1.74	2.93	-2.32	7.42	-18.46	. 58	-1. 16
. 240	-2.54	5.27	-2.49	6.83	-19.95	. 52	-1.37
. 250	. 69	. 95	-2. 34	6.66	-20.77	. 65	-1.59
. 260	-1.00	3.22*	-2.61	6.13	-22.62	. 67	-1.93
. 270	- 39	6.40	-2.61	5.83	-24.42	. 68	-2.08
. 290	-1.76	. 85	-2.31	6.01	-25.25	. 68	-2.35
. 290	-1.69	-. 82	-2.07	6.08	-25.54	. 69	-2.62
. 300	-3.23	-4.28	-1.99	6.79	-24.67	. 70	-2.98
. 310	1.95	-2.59	-1.77	7.23	-23.66	.71	-3.14
. 320	-1.41	2.62	-1.99	6.01	-24.03	. 71	-3.39
. 330	1.75	6.01	-2.05	5.46	-25.51	. 69	-3.65
. 340	. 15	5.12	-1:18	6.01	-26.92	. 69	-3.93
. 350	-1.08	3.70	-. 39	7.10	-27.65	.71	-4.21
. 360	-1.63	4.54	-. 82	6.75	-29.65	. 75	-4.50
. 370	1.42	1.93	-. 28	-. 97	-30.37	. 81	-4.80
. 380	-. 09	. 91	-. $2 ¢$	7.30	- 30.3	. 37	-5.11
. 390	-1.36	1.33	-.41	7.23	-31.42	92	-5.43
. 400	-1.40	. 5	-. 63	F.14	-31.73	. 97	-5. 75
. 410	-. 21	. 48	-. 40	7.72	-31.82	1.01	-6.07
. 420	. 82	90	-. 13	7.98	-21.86	1.08	-6.39
. 430	-.84	. 31	. 21	8.53	-31.73	1.16	-6.71
. 440	. 46	-. 22	. 05	8.43	-31.94	1.25	-7.03
. 460	. 64	-1.22	. 12	8.38	-31.62	1.34	-7.34
. 360	. 23	-. 40	. 12	8.26	-31.30	1.43	-7.65
. 470	-. 98	-1.00	-. 09	7.98	-31.28	1.51	-7.97
occup. A	fisk fac	tors			TIE (3)	VELOCITY (FPS)	
;LONG.		FTER 2.0	FT. OIS	. --	.48C	8.11	
ンLAT.	VEL. A	FTER 1.0	FT. OIS		. 221	-17.18	
Max. ACCEL. AFTER OCOUPANT DPACT					TDE(S)	ACC. (8S)	
ilons. >LAT.	ACCELERATION			\cdots	. 400	-1.74	
	ACCELER	PATION		-	. 269	6.86	

Table 21. Vehicle damage measurements, test WB-2.

	Before Test	After Test	Crush
L	58	58	Not Applicable
C-1	0.4	0.3	-0.1
C-2	0.8	3.3	+2.5
C-3	0.0	2.5	+2.5
C-4	0.0	4.0	+4.0
C-5	0.0	7.1	+7.1
C-6	1.5	11.5	+10.0

Maximum crush of 15.8 at a location of 25 to the right of vehicle centerline.

Note: All dimensions are in inches. $1 \mathrm{in}=2.54 \mathrm{~cm}$
Test No. KM-1
Test Date Nov. 18, 1988
Installation Length - ft [m] 69 [21]
BeamMember $9-$ by $10-\mathrm{in}$ [25.4 cm by 22.8 cm]. reinforced concreteLength - ft [m] 2 @ 24(7.3) and
. 1 @ 16(4.9)
Maximum Deflections - in. [cm]
Permanent noneDynamic nonePostDetails of the posts, blockouts, curb, anddeck are included in figure 35.
Vehicle 1982 Honda Civic
Mass - 1b [kg]
Test Inertia 1825 [827]
Dummy 165 [75]
Gross Test Weight 1990 [902]
Speed - mph [km/h] 51.0 [82.0]
Angle - degreesImpact20.5
Exit -3.7
Occupant Impact Velocity - ft/s [m/s]Forward (accel) . . 10.6 [3.2]/9.2 [2.8]Lateral (accel) -15.6 [-4.8]/-16.7 [-5.1]
Occupant Ridedown Accelerations - g's
Forward (accel) -1.1
Lateral (accel) 10.0
Maximum 50 msec Avg Accelerations - g'sLongitudinal (accel) -2.8/-5.4Lateral (accel) 4.0/8.1
Vehicle Damage
TAD 01-FR-4
VDI 01FREE6

Barrier Installation

The barrier evaluated in the test was a Modified Kansas Corral bridge rail. The barrier system, which consisted of concrete posts, rails and a 6-in ($15-\mathrm{cm}$) curb, was constructed on a simulated bridge deck. Total system length was $69 \mathrm{ft}(21 \mathrm{~m})$. Figure 35 presents details of the system tested.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the small car with the bridge rail and curb. Goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket, (2) the vehicle should remain upright throughout the event, and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1982 Honda Civic. Gross test weight, including the dummy and instrumentation was 1990 lb (902 kg).

Performance

Impact conditions were $51.0 \mathrm{~m} / \mathrm{h}(82.0 \mathrm{~km} / \mathrm{h})$ and a 20.5-degree impact angle. As shown in figures 36 and 37 , the vehicle impacted the barrier midway between posts 7 and 8 . The vehicle remained in contact with the barrier for $13.8 \mathrm{ft}(4.2 \mathrm{~m})$ before redirection at a -3.7 degree angle. During the impact sequence the right front tire/wheel became engaged between the top of the curb and the bottom of the rail and the wheel hub contacted post 8 . Although post 8 exhibited minor gouging, observation of the test film showed no significant snag potential. The vehicle remained stable during impact and redirection. The vehicle came to rest 150 ft [46 m] downstream of the impact point and 10.5 $\mathrm{ft}[3.2 \mathrm{~m}$] out from the barrier plane. The vehicle brakes were not applied after impact. Table 22 presents after impact vehicle trajectory. The barrier did not deflect during impact.

Film data indicated maximum $50 \mathrm{~m} / \mathrm{s}$ averages of -2.8 g 's (longitudinal) and 4.0 g 's (lateral). Maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations from transducer data indicated -5.4 g 's (longitudinal) and 8.1 g 's (lateral). Figure 38 presents a summary of test results. Vehicle kinetics from film and onboard transducers are tabulated in tables 23 and 24. Figure 38 contains photographs of vehicle and barrier damage. Plots of vehicle accelerations are presented in figure 39. Tables 25 and 26 present occupant risk data derived from film and the on-board transducers.

Barrier Damage

Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging was noted on post 8. Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered as undamaged.

Vehicle Damage

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The right front tire was blown out during impact and the A-frame was displaced rearward to the fender well. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 27.

Figure 35. Summary of results, test KM-1.

Figure 36. Sequential photographs during impact, test KM-1 (overhead view).

Figure 37. Sequential photographs, test KM-1 (view from downstream).

number . . 9 - in (22.8 cm)x $10-\mathrm{in}(25.4 \mathrm{~cm})$ relnforced concrete																				
maxim doflection - in. tem																				
Permenent . none																				
Peer																				
Detalle of the peete, blockouts, curb, and deck are Included in figure 14.																				
Vahicle . 1982 Monde civic																				
Heee - It [kel																				
Teet Inertle . 1025 ce2n																				

Figure 38. Summary of results, test KM-1.

Figure 39. Vehicle acceleration plots, test KM-1.

Table 22. After impact vehicle trajectory, test KM-1.

Location'	Distanc
0	0
10	-0.2
20	0.8
30	1.5
40	2.3
50	3.2
60	4.0
70	4.8
80	5.6
90	6.3
100	6.9

'Distance measured in the downstream direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.

Note: All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

Table 23. Vehicle kinetics data (film), test KM-1.
vehicle kinetics sumary--from filk analysis

$\begin{gathered} \text { TIME } \\ (S) \end{gathered}$	ACCEL. LONG.	(G'S) LAT.	HEADING ANG. (DEG)	VEL. LONG.	(FPS) LAT.	DISP \mathbf{x} -89	(F)
		3.51	20.51	74.75	3.18	. 99	-4.67
. 000	-2.77	3.51	20.05	73.87	3.74	1.69	-4.45
. 010	-2.84	3.66 3.78	19.49	72.99	4.21	2.40	-4.24
. 020	-2.87	3.78	18.82	72.12	4.60	3.10 3.79	-4.04
.030 .040	-2.88	3.93	18.06	71.26	4.91 5.13	3.79 4.48	-3.69
.040 .050	-2.80	3.96	17.22	70.42 69.61	5.18	5.17	-3.54
. 080	-2.74	3.97	16.29 15.30	69.68	5.36	5.85	-3.40
. 070	-2.65	3.95 3.90	14.25	68.10	5.37	6.53	-3.28
. 080	-2.55	3.90 3.84	13.15	67.40	5.32	7.20	-3.17 -3.08
090	-2.43	3.84	12.02	66.74	5.21	7.86	-3.08
100	-2.31	3.75 3.64	10.85	66.12	5.06	0.52	-3.00
.110	-2.18	3.64	9.67	65.54	4.85	9.18	-2.93
. 120	-2.05	3.52 3.37	8.49	65.00	4.61	9.83	-2.87
. 130	-1.91	3.37	7.30	64.50	4.33	10.48	-2.83
. 140	-1.78	3.21	6.13	64.04	4.03	11.12	-2.79
. 150	-1.65	3.04	4.98	63.60	3.70	11.76	-2.77
. 160	-1.53	2.86	4.87	63.20	3.35	12.40	-2.76
. 170	-1.41	2.66	3.87	62.82	2.99	13.03	-2.75
. 180	-1.30	2.45	2.79 1.75	62.46	2.61	13.65	-2.76
. 190	-1.20	2.24	1.75 .77	62.13	2.23	14.28	-2.77
. 200	-1.11	2.03	. 15	61.82	1.86	14.90	-2.78
. 210	-1.02	8	-1.01	61.53	1.48	15.51	-2.81
. 220	. 94	1.59	-1.80	61.26	1.11	16.13	-2.83
. 230	. 87	1.37	-2.51	61.00	. 76	16.74	-2.87
. 240	. 81	1.16	-3.15	60.76	. 41	17.35	-2.90
. 250	-. 75	. 75	-3.72	60.53	. 09	17.95	-2.94
. 260	-. 70	. 75	-4.21	60.31	-. 22	18.55	-2.98
. 270	-. 65	. 35	-4.62	60.11	. 51	19.15	-3.03
. 280	-. 60	. 37	-4.96	59.92	. 77	19.75	-3.07
. 290	-. 55	. 19	-4.96 -5.22	59.74	-1.01	20.35	-3.11
. 300	51	. 03	-5.22	59.58	-1.23	20.95	-3.16
. 310	47	.12 .26	-5.42 -5.54	59.43	-1.42	21.54	-3.20
. 320	43	. 26	-5.54	59.30	-1.59	22.13	-3.24 -3.29
. 330	. 39	. 49	-5.61	59.18	-1.73	22.72	-3.29 -3.32
. 340	-. 35	58	-5.56	59.08	-1.85	23.31	-3.32 -3.36
. 350	-. 30	68	-5.46	58.99	-1.96	23.90	-3.36 -3.40
. 360	-. 26	75	-5.33	58.92	-2.04	24.49	-3.40
. 370	-. 22	75	-5.16	58.86	-2.10	25.08	-3.43
. 380	-. 18	75	-4.97	58.82	-2.14	25.67	-3.46
. 390	-. 13	.76	-4.76	58.79	-2.18	26.25	-3.49
.400	09	6	-4.76	58.78	-2.20	26.14	-3.52
. 410	-. 05	-. 74	-4.54	58.77	-2.21	27.43	-3.54
. 420	-. 01	-. 71	-4.32	58.79	-2.21	28.02	-3.56 -3.58
. 430	. 03	-.65 -.57	-4.121	58.61	-2.20	28.61	-3.58 -3.60
. 440	. 06	-. 57	-3.91	58.84	-2.19	29.19	-3.60
.450	. 10	-. 47	-3.74	58.88	-2.18	29.78	-3.61
. 460	.13	. 36	-3.59	58.93	-2.16	30.37	-3.63
.470	. 15	-. 23	-3.41	58.99	-2.14	30.96	-3.64
.480	. 18	-. 08	-3.41	59.05	-2.11	31.55	-3.66
.490	. 20	. 097	-3.38	59.11	-2.08	32.14	-3.67 -3.68
. 500	. 21	. 27	-3.49	59.18	-2.04	32.74	-3.68 -3.70
.510	.23	. 69	-3.63	59.25	-1.99	33.33	-3.70

highest so-ms avg.accel.
TIME (SEC)

Table 24. Vehicle kinetics data (transducer), test KM-1.

VEHICLE KINETICS SUMMARY
NOTE: VALUES ARE INSTANTANEOUS AT TIME

TIME	ACCEL. (G'S)		HEAD. ANG. DEG	VELOCITY(FPS)		DISP.(F)	
(S)	LONG.	LAT.		LONG.	LAT.	X	Y
. 000	-3.58	-. 09	20.51	74.75	3.18	. 99	-4.67
. 010	-. 49	2.95	20.22	73.46	4.46	1.70	-4.45
. 020	-2.82	10.36	19.77	72.48	6.98	2.40	-4.25
. 030	-12.16	9.51	19.06	71.25	8.23	3.11	-4.08
. 040	-. 97	19.84	18.18	68.45	9.93	3.80	-3.94
. 050	-4.61	5.86	17.00	67.00	11.63	4.48	-3.85
. 060	-. 14	8.05	15.55	65.94	11.47	5.15	-3.77
. 070	-3.71	9.75	14.00	65.89	11.21	5.81	-3.71
. 080	2.62	-. 76	12.45	65.42	9.90	6.48	-3.67
. 090	1.10	. 52	10.91	65.45	9.12	7.14	-3.63
. 100	-2.27	3.56	9.40	64.81	7.92	7.80	-3.60
. 110	. 48	1.12	7.98	65.05	6.51	8.45	-3.57
. 120	-. 90	5.93	6.59	64.75	5.59	9.10	-3.55
.130	-5.84	7.93	5.27	64.17	6.76	9.75	-3.54
.140	-1.65	1.73	4.14	62.91	8.18	10.39	-3.57
. 150	1.79	-1.06	3.27	63.20	8.51	11.02	-3.61
. 160	-2.48	2.83	2.48	62.50	7.95	11.65	-3.66
. 170	-1.86	-2.70	1.76	61.93	6.92	12.28	-3.71
. 180	. 82	. 09	1.20	61.75	6.22	12.90	-3.76
. 190	-. 49	. 15	. 68	61.40	5.29	13.51	-3.81
. 200	. 06	-1.98	. 24	61.16	4.84	14.13	-3.86
. 210	. 82	-2.46	-. 11	61.25	4.27	14.74	-3.90
. 220	-. 97	-. 03	-. 41	61.06	3.91	15.35	-3.94
. 230	-. 21	-. 15	-. 70	60.97	3.56	15.96	-3.99
. 240	-. 90	. 03	-1.00	60.92	3.30	16.57	-4.03
. 250	-1.65	-. 09	-1.31	60.69	3.06	17.17	-4.07
. 260	-. 76	. 15	-1.58	60.48	2.78	17.78	-4.12
. 270	-. 21	. 03	-1.84	60.52	2.48	18.38	-4.16
. 280	. 96	. 46	-2.07	60.52	2.26	18.99	-4.21
. 290	-. 21	-. 58	-2.31	60.51	1.97	19.59	-4.25
. 300	-. 01	-. 15	-2.53	60.46	1.72	20.19	-4.29
. 310	-. 14	-. 27	-2.75	60.43	1.52	20.80	-4.34
. 320	. 82	-. 21	-2.95	60.48	1.31	21.40	-4.38
. 330	-. 69	.33	-3.16	60.45	1.16	22.00	-4.43
. 340	-. 62	. 33	-3.38	60.26	. 89	22.61	-4.47
. 350	. 68	-. 52	-3.57	60.14	.71	23.21	-4.52
. 360	. 48	-. 82	-3.74	60.06	. 59	23.81	-4.56
. 370	2.27	-1.00	-3.90	60.08	. 40	24.40	-4.61
. 380	-1.24	-. 15	-4.07	59.94	. 10	25.00	-4.65
390	. 62	. 82	-4.22	59.67	-. 22	25.60	-4.69
400	-. 76	. 88	-4.35	59.66	-. 16	26.20	-4.73

HIGHEST 50.0-MS AVG. ACCEL.
TIME (SEC)

	G'S	START	END
	$--5 .-5$	-016	.066
LONG.	-5.42	.016	.052
LAT.	8.13	.002	

Table 25. Occupant risk data (film), test KM-1.
OCCUPANT RISK SUROUARY -- FROM FILA ANALYSIS
NOTE: AVG. ACCEL. FOR PRIOR 0.010 SEC. CALCULATED from vehicle velocity change
RELATIVE VALUES-(OCCUPANT W.R.T. VEHICLE)

$\begin{aligned} & \text { TIME } \\ & \text { (S) } \end{aligned}$	ACCEL LONG.	$\begin{gathered} \text { VEHICLE } \\ \text { (G'S) } \\ \text { LAT. } \end{gathered}$	ANG. VEL (RAD/8)		$\begin{gathered} \text { (FPS) } \\ \text { LAT. } \end{gathered}$	$\begin{gathered} \text { JPANT }-\bar{~} \\ \text { DISP } \\ \text { LONG. } \end{gathered}$	(F) LAT
. 000	-2.77	3.51	.36	. 00	0.00	. 00	0
. 010	-2.84	3.66	. 35	. 65	$3-.84$. 00	00
. 020	-2.87	3.78	.34	1.32	-1.95	. 01	. .02
. 030	-2.88	3.67	. 33	1.99	-3.02	. 03	-. 04
. 040	-2.85	3.93	. 32	2.65	-4.15	. 05	-. 08
. 050	-2.80	3.96	. 30	3.28	-5.32	. 08	-. 13
. 060	-2.74	3.97	. 28	3.89	-6.54	. 11	-. 19
. 070	-2.65	3.95	. 27	4.46	-7. 10	.15	-. 26
. 080	-2.55	3.90	.25	4.99	-9.03	. 19	-. 35
. 090	-2.43	3.84	.23	5.47	-10.39	.24	-. 45
.100	-2.31	3.75	.21	5.89	-11.70	. 28	-. 57
.110	-2.18	3.64	. 19	6.27	-13.03	. 33	-. 70
. 120	-2.05	3.52	.17	6.59	-14.34*	. 38	-. 8 4*
.130	-1.91	3.37*	. 15	6.86	-15.64	. 43	-1.00
. 140	-1.7t	3.21	. 13	7.09	-16.92	. 48	-1.17
. 150	-1.65	3.04	.11	7.27	-18.16	. 52	-1.36
.160	-1.53	2.86	. 09	7.42	-19.36	. 57	-1.36
.170	-1.41	2.66	. 07	7.54	-20.51	. 62	-1.77
. 180	-1.30	2.45	. 05	7.63	-21.61	. 65	-1.99
. 190	-1.20	2.24	. 03	7.70	-22.65	. 69	-2.22
.200	-1.11	2.03	. 01	7.77	-23.62	. 73	-2.47
. 210	-1.02	1.81	. 00	7.83	-24.52	.76	-2.72
. 220	-. 94	1.59	-. 02	7.19	-25.35	.80	-2.98
.230	-. 87	1.37	-. 03	7.96	-26.10	. 8	-3.25
. 240	-. 81	1.16	-. 04	8. 04	-26.78	.87	-3.52
.250	-. 75	. 95	-. 06	8.14	-27.38	. 91	-3.11
. 260	-. 70	. 75	-. 06	6. 25	-27.90	. 95	-4.09
.270	. .65	. 35	-. 07	6.39	-28..34	1.00	-4.38
. 280	-. 60	.37	-. 08	8. 34	-28.72	1.05	-4.67
. 290	-. 55	. 19	-. 09	8.72	-29.01	1.11	-4.97
. 300	-. 51	. 03	-. 09	. 61	-29.24	1.18	-5.26
. 310	-. 47	-. 12	-. 09	9.12	-29.40	1.25	-5.56
. 320	-. 43	-. 26	-. 10	9.34	-29.49	1.33	-5.86
. 330	-. 39	-. 38	-. 10	9.58	-29.52	1.42	-6.16
. 340	-. 35	-. 49	-. 10	9.01 -	-29.49	1.51	-6. 45
. 350	-. 30	-. 58	-. 101	10.05	-29.41	1.62	-6.74
. 360	-. 26	-. 65	-. 1010	10.29 -	-29.26	1.73	-7.03
. 370	-. 22	-. 71	-. 091	10.31 -	-29.11	1.85	-7. 32
. 380	-. 28	-. 75	-. 091	10.72+ -	-28.90	1.98+	-7.61
. 390	-. 13	-. 76	-. 091	10.91 -	-28.67	2.11	-7. 19
.400	-. 09	-. 76	-. 081	11.08 -	-28.41	2.25	-8. 17
.410	-. 05	-. 74	-.08 11	$11.22-2$	-28.13	2.40	-3.44
. 420	-. 01	-. 71	-.08 11	$11.32-2$	-27. 15	2.54	-8.71
.430	.03 -	-. 65	-. 0711	$11.40-27$	-27.37	2.69	-8.98
. 440	.06	-. 57	-. 0711	11.43 -2	-27.30	2.83	-9.24
.450	.10	-. 47	-. 07 11	11.43 -2	-27.04	2.93	-9.51
.460	.13 -	-. 36	-. 0611	11.39 -2	26.81	3.12	-9.77
. 470	.15 -	-. 23	-. 0611	$1.32-2$	26.62	$3.25-1$	10.03
. 480	.18 -	. 08	$=.0611$	$1.20-2$	26.47	$3.37-1$	10.32
490	. 20	. 09	-. 0611	1.05 -2	26.37	3.49-10	10.55
500	. $21+$.27	-. 0610	$10.86-2$	26.33	$3.59-1$	10.82

Table 26. Occupant risk data (transducer), test KM-1.

OCCUPANT RISK SUMMARY							
NOTE: INSTANTANEOUS 10-ms average accelerations							
$\begin{gathered} \text { TIME } \\ (S) \end{gathered}$							
	ACCEL.	(G'S)	ANG. VEL	VEL.	(FPS)	DISP	P (F)
	LONG.	Lat.	(RAD/S)	LONG.	. LAT.	LONG.	LAT.
. 000	-3.58	-. 09	-. 39	. 00	00.00	. 00	. 00
. 010	-. 90	6.86	-. 63	1.00	-1.39	. 01	-. 01
. 020	-4.19	8.98	-. 96	1.59	-4.10	. 02	-. 03
. 030	-8.83	7.16	-1.18	2.56	-6.04	. 03	-. 08
. 040	-6.75	12.07	-1.77	4.63	-8.20	. 07	-. 25
. 050	-5.33	4.35	-2.63	4.98	-10.45	. 11	-. 25
. 060	-1.76	5.54	-2.49	6.14	-12.36	. 16	-. 37
. 070	-1.11	3.13	-2.81	5.66	-13.75	. 21	-. 51
. 080	-1.97	2.38	-2.70	6.08	-14.61	. 25	-. 66
. 090	-1.66	2.77	-2.77	5.73	-15.75	. 29	-. 82
. 100	-1.03	-. 94	-2.69	6.18	-16.61*	. 33	-.99*
. 110	-. 71	1.88	-2.28	6.14	-17.51	. 36	-1.17
. 120	-1.61	5.04	-2.37	5.97	-18.28	. 39	-1.35
. 130	-4.82	9.59*	-2.13	6.47	-21.42	. 42	-1.56
. 140	-1.11	6.40	-1.80	7.79	-24.67	. 46	-1.80
. 150	-. 15	1.45	-1.38	7.73	-26.60	. 51	-2.07
. 160	-3.00	. 79	-1.42	8.11	-26.99	. 56	-2.34
. 170	-1.64	-1.78	-1.03	8.91	-27.32	. 61	-2.62
. 180	-. 41	-. 21	-. 94	8.98	-27.43	. 67	-2.90
. 190	-1.72	. 05	-. 88	9.20	-27.22	. 74	-3.18
. 200	-. 01	-1.27	-. 67	9.52	-27.57	. 80	-3.46
. 210	-. 28	-. 18	-. 57	9.42	-27.55	. 88	-3.74
. 220	-. 68	. 29	-. 46	9.62	-27.70	. 95	-4.02
. 230	. 00	-. 28	-. 52	9.51	-27.64	1.03	-4.30
. 240	-. 46	. 37	-. 53	9.41	-27.74	1.10	-4.59
. 250	-. 77	. 26	-. 51	9.54	-27.90	1.17	-4.87
. 260	-. 29	-. 04	-. 46	9.69	-28.02	1.24	-5.15
. 270	. 08	. 12	-. 42	9.59	-28.08	1.31	-5.44
. 280	-. 07	-. 25	-. 41	9.48	-28.16	1.39	-5.73
. 290	-. 20	-. 10	-. 41	9.38	-28.16	1.45	-6.01
. 300	-. 05	. 16	-. 38	9.37	-28.23	1.52	-6.30
. 310	-. 05	-. 01	-. 37	9.31	-28.29	1.59	-6.59
. 320	. 29	. 14	-. 34	9.20	-28.38	1.66	-6.88
. 330	-. 49	-. 05	-. 38	9.08	-28.43	1.73	-7.17
. 340	-. 60	. 05	-. 36	9.19	-28.45	1.79	-7.46
. 350	.11	-. 05	-. 31	9.28	-28.56	1.86	-7.75
. 360	-. 59	. 15	-. 30	9.28	-28.67	1.93	-8.04
. 370	-. 09	-. 17	-. 27	$9.23+$	-28.71	$2.00+$	-8.34
. 380	-. 454	-. 35	-. 28	9.27	-28.59	2.06	-8.63
. 390	-. 56	. 09	-. 24	9.51	-28.51	2.13	-8.92
. 400	-. 36	. 46	-. 22	9.48 -	-21.74	2.21	-9.21
OCCUP. RISK FACTORS					tine (S)	VELOCITY (FPS)	
$\begin{aligned} & >\text { LONG. } \\ & >\text { LAT. } \end{aligned}$	VEL. A VEL. A	$\begin{array}{cc} \text { TER } 2.0 \\ \text { TER } 1.0 \end{array}$	FT. DISP FT. DISP		.370 .101	$\begin{array}{r} 9.18 \\ -16.69 \end{array}$	
MAX. ACCEL. AFTER		R OCCUPANT IMPACT		- TIME(S)		ACC. (GS)	
$\begin{aligned} & >\text { LONG. } \\ & >\text { LAT. } \end{aligned}$	$\begin{aligned} & \text { ACCELER } \\ & \text { ACCELER } \end{aligned}$	ATION ation		--	.383 .131	-1.13 9.99	

Table 27. Vehicle damage measurements, test KM-1.

	Before Test	After Test	Crush
L	48	48	Not Applicable
C-1	1.3	4.0	2.7
C-2	0.0	2.8	2.8
C-3	0.0	-0.8	+0.8
C-4	0.0	8.8	8.8
C-5	0.3	8.5	8.2
C-6	0.3	10.0	9.7

Maximum crush of 10.5 at a location of 22 to the right of vehicle centerline.

Note: All dimensions are in inches. 1 in $=2.54 \mathrm{~cm}$
Test No. KM-2
Test Date Aug. 17, 1989
Installation Length - ft[m] 69 [21]
BeamMember . . 9 - by 10 in . [25.4 cm by 22.8 cm]Length - ft[m] 2 24(7.3) and. 1 @ 16(4.9)
Maximum Deflections - in [cm]Permanent noneDynamic none
Post
Details of the posts, curb, and deck are included in figure 40.
Vehicle 1983 Ford F150 Pickup
Mass - lb [kg]
Test In 5245 [2379]
Dummy 165 [75]
Gross Test Weight 5410 [2454]
Speed - mi/h [km/h] 46.6 [75.0]
Angles - degrees
Impact 20.0
Exit -2.4
Occupant Impact Velocity - ft/s [m/s]Forward (film/accel) 2.3 [0.7]/7.2 [2.2]Lateral (film/accel) -18.2 [5.5]/. -21.3.3 [-6.5]
Occupant Ridedown Accelerations - g's
Forward (accel)Lateral (acce1) 9.7
Maximum 50 msec Avg Accelerations - g'Longitudinal (film/accel) . . . -2.7/-3.4Lateral (film/accel) 4.9/8.8
Vehicle Damage
TAD 01-FR-4
VDI 01FREE6

TEST KM-2

Barrier Installation

The barrier evaluated in the test was a Modified Kansas Corral bridge rail. The barrier system, which consisted of concrete posts, rails and a 6 -in ($15-\mathrm{cm}$) curb, was constructed on a simulated bridge deck. Total system length was $69 \mathrm{ft}(21 \mathrm{~m})$. Figure 40 presents details of the system tested.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system, (2) the vehicle should remain upright throughout the event, and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1984 Ford F150 Pickup. Gross test weight, including the dummy and instrumentation was $5419-1 \mathrm{~b}$ (2458 kg).

Performance

Impact conditions were $46.6 \mathrm{~m} / \mathrm{h}[74.9 \mathrm{~km} / \mathrm{h}]$ and a 20.0 -degree impact angle. As shown in figure 41 , the vehicle impacted the barrier $0.8 \mathrm{ft}[0.2 \mathrm{~m}]$ downstream of Post 7. The vehicle remained in contact with the barrier for 15.0 ft [4.6 m] before redirection at a -2.4 degree angle. The vehicle showed no tendency to snag on the curb or posts during the impact sequence. No significant pitch, roll, or yaw was noted during impact and redirection. The vehicle came to rest $190 \mathrm{ft}[58 \mathrm{~m}$] downstream of the impact point and 35 ft [11 m] out from the barrier plane. The vehicle brakes were applied at approximately 130 ft [40 m] after impact. Table 28 presents after impact vehicle trajectory. The barrier did not deflect during impact.

Film data indicated maximum $50 \mathrm{~m} / \mathrm{s}$ averages of -2.7 g 's (longitudinal) and 4.9 g 's (lateral). Maximum $50 \mathrm{~m} / \mathrm{s}$ average accelerations from transducer data indicated -3.4 g 's (longitudinal) and 8.8 g 's (lateral). Figure 43 presents a summary of test results. Vehicle kinetics from film and onboard
transducers are listed in tables 29 and 30 . Plots of vehicle accelerations are presented in figure 44. Tables 31 and 32 present occupant risk data derived from film and the on-board transducers.

Barrier Damage

Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging from wheel contact was noted on the lower edge of the rail in the impact area. Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered as undamaged.

Vehicle Damage

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The front bumper was deformed inward at the impact area. The right front tire was blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 33.

N

Figure 40. Barrier construction details, test KM-2.

Figure 41. Sequential photographs during impact (overhead view), test KM-2.

Figure 42. Sequential photographs during impact as viewed from downstream, test KM-2.


```
Angle - degran
        mpect.
        Impect
        20
        Exit . . . . . . . . . . . . . . . . . . . . . .. .. . - 2.4
    Oceupent Impect velocity - ipe invi
```



```
    Occupent Ridedown Acceleratione - g'e
        formerd (mecel)
```



```
    maximin 50 m/a Avil Accelerutione - 0'0
        Longitudinel (flimeccel) . . . . . . . . . . . . . . -2.7/-3.4
        Lateral (flleveccel) . . . . . . . . . . . . . . . . . . 4.9/8.8
Vahicle Damege
```



```
    vol . . . . . . . . . . . . . . . . . . . . . . . . . . 01FREE6
```

Figure 43. Summary of results, test KM-2.

Figure 44. Vehicle acceleration plots, test KM-2.

Table 28. After impact vehicle trajectory, test KM-2.

Location 1	Distance 2
0	0
10	-0.3
20	1.0
30	2.3
40	2.4
50	3.3
60	4.3
70	5.2
80	6.3
90	7.5
100	8.8

Distance ${ }^{2}$

0
-0.3
1.0
2.4
3.3
4.3
5.2
6.3
8.8
'Distance measured in the downstream direction with 0 as the point of impact.
${ }^{2}$ Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.

Note: All dimensions are in feet. $1 \mathrm{ft}=0.305 \mathrm{~m}$

Table 29. Vehicle kinetics data (film), test KM-2.

TIME (3)	accel. LONG.	($0^{\prime} 8$) LAT.	HEADIMG NNG. (DEG)	yEL. 10w6.	(7Ps) Lat.	XISP^{2}	(F)
	-1.63	1.04	20.04	68.31	-2.00	-8.80	-4.90 -4.65
. 0100	-1.62	1.72	20.03	67.79	-1.56	-8.17 -7.54	-4.42
. 020	-1.59	2.36	19.75	67.37	-1.01	-6.91	-4.18
. 030	-1.57	2.94	19.50	66.26	.37	-6. 29	-3. 25
. 040	-1.53	3.46	13.14	65.78	1.14	-5. 66	-3.74
. 050	-1.48	3.31	18.69	65.32	1.94	-5.04	-3.54
. 060	-1.43	4.28	16.15	64.90	2.75	-4.41	-3. 36
. 070	-1.36	4.57	17.52	64.50	3.55	-3.79	-3.19
. 080	-1. 29	4.75 4.90	16.82	64.18	4.32	-3.26	-3.04
. 050	-1.21	4.90	16.04	63.83	5.05	-2.53	-2.90
. 100	-1.14	4.96	15.20	63.56	5.70	-1.30	-2.78
. 120	-1.06	4.85	14.30	63.33	6.29	-1. 28	-2.68
. 120	98	4.70	13.36	63.13	6.79	-. 65	-2.59
.130	-. 32	4.70	12.38	62.98	7.19	-. 02	-2.52
. 140	11	4.48	11.38	62.82	7.50	. 61	-2.46
. 150	.81	4.85	10.37	62.70	7.71	1.24	-2.42
. 160	$\begin{array}{r}\text {-.77 } \\ \hline .75\end{array}$	3.85	9.35	62.60	7.82	1.88	-2.39
. 170	-.75	3.63	1.33	62.45	7.83	2.51	-2.37
. 180	-.74	3.29	7.34	62.39	7.74	3.13	-2.36
. 190	-. 74	2.94	6.36	62.26	7.37	3.76	-2.36
. 200	-. 76	2.58	5.42	62.15	7.32	4.39	-2.37
.210	-. 78	2.22	4.53	62.01	7.00	5.01	-2.39
. 220	. 81	1.36	3.53	61.85	6.63	5.64	-2.42
. 230	-. 84	1.53	2.88	61.66	6.21	6.26	-2.44
. 240	-. 87	1.21	2.14	61.46	5.76	6.4	-2.4*
. 250	-. 90	82	2.14	61.23	3.28	7.49	-2.51
. 260	-. 92	65	2.85	60.99	4.80	8.10	-2.55
.270	-. 93	. 42	23	60.73	4.32	6.71	-2.39
. 210	-. 93	. 22	. 29	60.46	3.85	9.32	-2.63
. 290	-. 92	. 07	. 82	60.20	3.40	9.92	-2.67
. 300	0	14	-. 98	59.93	2.99	10.52	-2.71
. 310	1	-. .18	-1.29	59.68	2.61	11.12	-2.75
. 320	75	. 18	-1.54	59.44	2.29	11.71	-2.79
. 330	-. 75	. 15	-1.75	59.22	2.02	12.30	-2.83
. 340	-. 67	15	-1.92	59.02	1.01	12.89	-2.87
. 350	. 58	08	-2.08	58.85	1.64	13.4*	-2.81
. 360	. 49	14	-2.05	50.71	1.58	14.07	-2.94
. 370	-. 40	. 14	-2.25	38.60	1.56	14.65	-2.98
. 380	-. 30	. 25	-2.33	58.52	1.61	15.24	-3.02
. 390	-. 21	. 45	-2.36	58.47	1.72	15.62	-3.06
. 400	. 13	.64	-2.36	58.44	1.89	16.41	-3.10
.410	. 05	1.02	-2.30	58.44	2.12	16.95	-3.15
.420	. 01	2.02	-2.39	34.46	2.38	11.57	-3.20
.430	. 05	1.21 1.39	-2.71	58.48	2.68	18.16	-3.25
. 440	. 08	1.35	-2.84	38.32	3.02	18.74	-3.31 -3.37
. 450	. 08	1.55 1.69	-3.01	58.55	3.37	15.32	-3.37 -3.43
. 460	. 06	1.68	-3.22	58.57	3.73	19.90	-3.43 -3.51
. 470	.00 -.07	1.80	-3.43	58.58	4.08	20.49	-3.51
.480	-. 07	1.87	-3.72	54.55	4.41	21.07	-3.59
.490	-. 18	1.90	-4.02	53.50	4.71	21.65	-3.67
. 500	-. 32	2.82	-4.36	58.40	4.96	22.23	-3.76
. 510	-. 49	1.72	-4.72	58.24	5.16	22.81	-3.86
. 520	-. 69	1.70 1.53	-5.10	50.01	5.30	23.38	-3.96
. 530	-. -12	1.53	-5.10	57.72	3.35	23.95	-4.07
. 540	-1.16	1.31	-5.50	57.34	5.33	24.52	-4.18
. 550	-1.42	1.03	-5.30	56.67	5.21	25.08	-4.29
. 560	-1.70	. 71	6.30	56.32	5.00	25.64	-4.41
. 570	-1.97	. 33	-7.04	55.67	4.69	26.19	-4.32
. 580	-2. 23	-. 09	-7.04	54.94	4.29	26.73	-4.63
. 590	-2.46	-1.04	-7.32	54.14	3.76	27.27	-4.75
. 600	-2.64	-1.04	-7.83	53.28	3.17	27.79	-4.85
. 110	-2.75	-1.55	-7.98	\$2.40	2.46	28.31	-4.95
. 620	-2.76	-2.06	-7.01	\$1.53	2.67	23.83	-5.05
.630	-2.64	-2.87	-7.97	50.72	. 80	29.33	-5. 13
. 640	-2.35	-3.04	-7.97	50.03	-. 13	29.83	-5.20
. 650	-1.87	-3.46	-7.64	49.58	-2.11	30.32	-5.26
. 660	-1.14	-3.71	-7.31	45.34	-2.10	30.81	-5.31
.670 .680	-7.24	-3.88	-7.38	49.33	-3.06	31.31	-5.35
.690	2.88	-3.72	-6.50	30.23	-3.94	31.82	-5.37

Table 30. Vehicle kinetics data (transducer), test KM-2.
VEHICLE KINETICS SUROARY
NOTE: VALUES ARE INSTANTANEOUS AT TIME

$\underset{(S)}{\text { TIME }}$	$\begin{gathered} \text { ACCE! } \\ \text { LONG. } \end{gathered}$	(G'3) LAT.	HEAD. ANG DEG	VELOC LONG.	ITY (FPS) LAT.		S_{Y}
. 000	. 79	. 81	20.04	68.31	-2.00	-8. 80	-4.90
. 010	-5.44	3.99	20.05	67.81	-1.34	-8.17	-4.65
. 020	. 82	-. 80	20.11	67.59	-. 91	-7.53	-4.41
. 030	-1.63	5.64	20.10	67.33	. 45	-6.90	-4.17
. 040	1.11	-1.19	19.94	66.91	. 63	-6.26	-3.95
. 050	. 04	3.14	19.66	67.23	. 42	-5.63	-3.72
. 060	-10.66	6.03	19.17	65.33	. 59	-5.00	-3.51
. 070	. 45	9.93	18.47	64.95	1.79	-4.39	-3.31
. 080	-7.39	11.35	17.70	64.42	3.86	-3.77	-3.14
. 090	-7. 32	11.08	16.90	62.20	6.75	-3.15	-3.00
. 100	-3.05	8.75	16.08	62.03	9.59	-2.53	-2.90
. 110	-. 25	3.04	15.10	61.79	10.25	-1.91	-2.83
. 120	-2.73	. 22	13.97	61.13	9.63	-1.29	-2.78
. 130	-. 91	4.36	12.77	61.40	8.83	-. 67	-2.72
. 140	-6.35	7.54	11.51	61.10	8.23	-. 05	-2.68
. 150	-2.10	2.12	10.23	60.98	7.06	. 56	-2. 64
. 160	-. 91	-. 70	8.91	60.89	5.68	1.18	-2.60
. 170	3.47	-. 76	7.50	61.32	3.89	1.79	-2.56
. 180	-2.51	1.11	6.04	61.49	1.91	2.40	-2.52
. 190	-. 25	5.54	4.60	61.21	3.43	3.01	-2.49
. 200	. 64	3.24	3.39	61.09	4.08	3.62	-2.48
. 210	-2.57	-4.04	2.29	60.92	2.37	4.23	-2.49
. 220	2.74	1.21	1.28	60.19	1.25	4.84	-2.48
. 230	-4.18	6.52	. 30	59.43	1.32	5.44	-2.49
. 240	-1.98	14.43	-. 37	59.85	2.67	6.03	-2.50
. 250	-6.07	9.97	-1.18	59.73	4.19	6.63	-2.55
. 260	-7.23	5.37	-1.53	58.49	5.23	7.22	-2.61
. 270	4.73	1.39	-1.78	57.76	5.89	7.80	-2.68
. 280	-1.63	3.08	-1.99	57.89	6.74	8.38	-2.76
. 290	-3.20	. 19	-2.16	57.53	6.53	8.95	-2.85
. 300	-4.08	1.17	-2.31	57.20	6.19	9.52	-2.94
. 310	-2.92	2.22	-2.42	56.90	6.59	10.09	-3.03
. 320	-. 12	1.57	-2.47	56.96	6.78	10.66	-3.12
. 330	. 10	-1.39	-2.45	56.94	6.91	11.22	-3.21
. 340	-1.28	2.45	-2.41	56.88	6.89	11.79	-3.30
. 350	-. 91	. 94	-2.37	56.58	7.12	12.35	-3.40
. 360	-1.13	. 42	-2.35	56.40	6.95	12.92	-3.49
. 370	. 10	.42	-2.32	56.37	6.61	13.48	-3.58
. 380	. 38	-. 30	-2.31	56.31	6.81	14.04	-3.67
. 390	-. 75	-. 14	-2.27	56.22	6.66	14.60	-3.76
. 400	-1.00	. 29	-2.25	56.17	6.67	15.15	-3.85
. 410	. 01	-. 27	-2.24	55.98	6.73	15.71	-3.94
. 420	. 01	. 02	-2.26	55.93	6.76	16.27	-4.03
430	. 79	. 16	-2.28	55.89	6.92	16.82	-4.12
440	. 29	-. 37	-2.27	56.09	6.93	17.38	-4.21
450	-. 12	-. 11	-2.25	56.02	6.94	17.94	-4.30
460	-. 50	1.07	-2.22	55.96	7.17	18.50	-4.39
470	-. 62	. 45	-2.18	55.84	7.50	19.05	-4.49
430	-. 62	. 29	-2.12	55.73	7.64	19.61	-4.58
490	. 38	1.21	-2.07	55.66	e.04	20.16	-4.68
500	-. 50	1.07	-2.00	55.54	e. 54	20.71	-4.79
510	-. 62	. 42	-2.92	55.43	0.79	21.26	-4.89
520	-. 03	78	-1.83	55.24	9.11	21.11	-5.00
530	-. 50	1.21	-1.74	55.12	9.49	22.36	-5.11
540	.13	. 19	-1.65 5	54.96	9.80	22.91	-5. 22

highest 50.0-hs avg. accel.
TIME (8EC)

	6's	START	END
LONG.	-3.42	. 051	.101
LAT.	1.82	. 059	. 109

Table 31. Occupant risk data (film), test KM-2.
OCCUPANT RISK SURARRY -- FROM FILM ANALYSIS
NOTE: AVG. ACCEL. FOR PRIOR 0.010 SEC. CALCULATED
from vehicle velocity change
relative values-(OCCUPant w.r.t. vehicle)

$\begin{aligned} & \text { TIME } \\ & \text { (S) } \end{aligned}$	ACCEL LONG.	$\begin{gathered} \text { VEHICLE } \\ \text { (G'S) } \\ \text { LAT. } \end{gathered}$	ANG. VEL (RAD/S)	VEL. LONG.	$\begin{gathered} \text { (FPS) } \\ \text { LAT. } \end{gathered}$	$\begin{aligned} & \text { WT -- } \\ & \text { DISP. } \\ & \text { LONG. } \end{aligned}$	(F) LAT.
			. 35	. 00	. 00	. 00	. 00
. 000	-1.63	1.04	. 35	. 35	. .61	. 00	. 00
. 010	-1.62	1.72	. 35	. 68	-1.44	. 01	-. 01
. 020	-1.59	2.36	+35	. 99	-2.48	. 02	-. 03
. 030	-1.57	2.94	. 35	1.27	-3.71	. 03	-. 06
. 040	-1.53	3.46	. 34	1.53	-5. 10	. 04	0.11
. 050	-1.48	3.91	. 33	1.76	-6.63	. 06	-. 17
. 060	-1.43	4.28	.33	1.96	-8. 26	. 07	-. 24
. 070	-1.36	4.57	. 32	2.12	-9.98	. 09	-. 33
. 080	-1.29	4.78	-31	2.25	-11.74	.11	-. 44
. 090	-1.21	4.90	. 29	2.33	-13.52	. 12	-. 57
. 100	-1.14	4.96	. 27	2.36	-15.30	. 14	-. 72
.110	-1.06	4.94	. 27	2.36	-17.05*	. 15	-.88*
.120	-. 98	4.85	25 .23	2.31	-18.74	. 16	-1.06
.130	-. 92	4.70*	. 23	2.23	-20.35	. 16	-1.26
. 140	-. 86	4.49	. 22	2.12	-21.83	. 16	-1.47
.150	-. 81	4.24	. 20	2.00	-23.29	. 15	-1.70
. 160	. 77	3.95	.18	1.85	-24.59	. 14	-1.95
. 170	-. 75	3.63	.16	1.71	-25.75	. 12	-2.20
. 180	0.74	3.29	. 15	1.57	-26.78	. 09	-2.46
. 190	. .74	2.94	. 13	1.45	-27.67	. 06	-2.74
. 200	-. 76	2.58	. 11	1.35	-28.42	. 03	-3.02
.210	-. 78	2.22	. 08	1.28	-29.03	. .01	-3.31
. 220	-. 81	1.86	. 06	1.24	-29.52	-. 05	-3.60
. 230	-. 84	1.53	. 06	1.25	-29.89	-. 08	-3.90
. 240	-. 87	1.21	. 05	1.30	-30.15	. .12	-4.19
. 250	-. 90	. 92	. 03	1.38	-30.30	-. 16	-4.49
. 260	-. 92	. 65	. 01	1.51	-30.38	-. 20	-4.80
. 270	-.93	- 42	. 01	1.67	-30.37	-. 23	-5.10
. 280	-. 93	. 22	.01	1.86	-30.31	-. 26	-5.40
.290	-. 92	.07 .06	. 01	2.07	-30.21	-. 28	-5.70
. 300	-. 90	. .06	-. .02	2.29	-30.08	-. 29	-6.00
. 310	-. 86	-. 14	-. 02	2.59 2.52	-29.93	-. 30	-6.30
. 320	-. 81	-. 18	-. 0.03	2.75	-29.78	-. 30	-6.60
. 330	-.75	-.19 -.15	-. 0.03	2.97	-29.65	-. 30	-6.89
. 340	-. 67	-. 15	-. 0.03	3.17	-29.54	-. 29	-7. 19
. 350	-. 58	-. 09	-. .03	3.35	-29.47	-. 27	-7.48
. 360	-. 49	. 01	-. 0.04	3.49	-29.45	-. 25	-7.77
.370	-. 40	. 14	-. .04	3.60	-29.49	-. 23	-8.07
. 380	-. 30	. 29	-. .04	3.67	-29.59	-. 20	-8.36
. 390	-:21	. 64	-. 04	3.69	-29.77	-. 18	-8. 66
.400	-. 13	. 64	-. .04	3.67	-30.02	-. 15	-8.96
.410	-. 05	1.82	-. 0.04	3.61	-30.35	-. 12	- 8.26
.420	.01	1.02	-. .05	3.52	-30.75	-. 10	-9.57
.430	. 05	1.21	.. 05	3.38	-31.23	-. 09	-9. 81
.440	. 08	1.39	-. 0.05	3.22	-31.77	-. 08	-10.19
.450	. 08	1.55	-. .05	3.03	-32.36	-. 08	-10.51
. 460	. 06	1.6	-. .06	2.84	-33.01	2	-10.84
.470	. 00	1.80	-. .06	2.64	-33.68	-. 10	-11.17
. 480	07	1.6	-. 06	2.44	-34.37	-. 13	-11.51
. 490	-. 18	1.90	-. 07	2.274	-35.07	-. 17	-11.86

Table 33. Vehicle damage measurements, test KM-2.

	Before Test	After Test	Crush
L	56	56	Not Applicable
C-1	2.0	3.8	1.8
C-2	1.0	5.5	4.5
C-3	0.0	4.0	4.0
C-4	0.0	3.5	3.5
C-5	1.0	15.6	14.6
C-6	2.0	14.0	12.0

Maximum crush of 16.0 at a location of 25.0 to the right of vehicle centerline.

Note: All dimensions are in inches. 1 in $=2.54 \mathrm{~cm}$

REFERENCES

Reference

1. Jarvis D. Mitchie, "Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances," National Cooperative Highway Research Program, Washington, D.C., Report No. 230, March 1981.
2. "Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals," American Association of State Highway and Transportation Officials, Washington, D.C., 1985.
3. M. E. Bronstad, et al, "Bridge Rail Designs and Performance Standards," Federal Highway Administration, Washington, D.C., Report No. FHWA/RD-87/049, February 1987.
4. T. J. Hirsch, "Analytical Evaluation of Texas Bridge Rails to Contain Buses and Trucks," Texas Transportation Institute, San Antonio, Texas, Research Report No. 230-2, August 1978.
5. M. E. Bronstad, et al, "Concrete Median Barrier Research, Volume 2," Federal Highway Administration, Washington, D.C., Report No. FHWA-RD-77-4, March 1976.
