Publication No. FHWA-RD-90-052 May 1990

Aesthetic Bridge Rails, Transitions, and Terminals For Park Roads and Parkways

U.S. Department of Transportation

Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, Virginia 22101-2296

19.	Security Classif. (of this report Unclassified	20. <u>Security Cla</u> Unclassified			No. of Pages 145	22. <u>Pric</u>		
17.	<u>Key Words</u> Guardrail Crash Bridge rail Highwa Transition	test y safety		This Wel Te	document is availa chnical Informatio 22161.			
	for full-scale testing to Perform							
	Both the Modified Kansas Corral and Natchez Trace designs should be submitted for certification as acceptable for on Federal Lands highways, including Indian Reservation roads, National Park roads and parkways, and forest highwa Based on the analyses conducted, the Natchez Trace bridge rail should be tested in its current design to Performan Level 1 of the 1989 AASHTO guide specifications. The Aluminum Tri-Rail bridge rail should be modified and submitt							
	The Forest Service glulam bridge rail and the Modified Kansas Corral bridge rail passed both small sedan and pickup truck full-scale tests. Vehicle behavior during and after impact was, in all cases, acceptable. Computer simulatio on the Modified Kansas Corral bridge rail and the Natchez Trace bridge rail indicated that the vehicle would be redirected with no vaulting. The Aluminum Tri-Rail bridge rail has a high snagging potential.							
	The objective of this project was to test aesthetic bridge rails for park roads, parkways, and other roads under Federal jurisdiction. Four designs were analyzed and evaluated: the Modified Kansas Corral bridge rail, the Fores Service glulam bridge rail, the Natchez Trace bridge rail, and the aluminum tri-rail bridge rail with sidewalk. T designs were tested and evaluated: the Forest Service glulam bridge rail and the Modified Kansas Corral bridge rai Two full-scale crash tests were conducted with each design.							
16.	Abstract		ану _{нан}					
	FHWA Contracting Officer's Techn	ical Representative:	Charles F. NcDevitt, P.	E. (HSR-20)			
15.	Supplementary Notes	<u> </u>		1				
	6300 Georgetown Pike McLean, Virginia 22101-2296			14.	Sponsoring Agency	Çode		
12.	Sponsoring Agency Name and Addre Office of Safety and Traffic Ope Federal Highway Administration			13.	<u>Type of Report an</u> Final Report May 1988 - Decemb			
	1750 New York Avenue, Northwest Washington, DC 20006			11.	Contract or Grant DTFH71-88-2-00005			
9.	Performing Organization Name and The Scientex Corporation Engineering Systems Division	d Address		10.	Work Unit No. (TR NCP 3A5C0112	AIS)		
7.	<u>Author(s)</u> Kathleen L. Hancock, Allen G. Ha	ansen and Joe B. May	er	8.	Performing Organi 11600-1	zation Rep		
	FOR PARK ROADS AND PARKWAYS			6.	Performing Organi	zation Cod		
6.	Title and Subtitle AESTHETIC BRIDGE RAILS, TRANSIT	IONS, AND TERMINALS		5.	Report Date Nay 1990			
	R <u>eport No.</u> FHWA-RD-90-052	2. <u>Government</u>			Recipient's Catal			

TABLE OF CONTENTS

<u>SE(</u>	<u>:TION</u>		PAGE
1.	INTR	ODUCTION AND RESEARCH APPROACH	1
	a.	Statement of the Problem	1
	b.	Objectives and Scope	1
	c.	Research Approach and Report Organization	1
		Task A. Barrier analysis and design	2
		Task B. Full-scale tests	2
		Task C. Final report	3
2.	SUMM	ARY OF ANALYSIS	3
	a.	Design Reviews	3
	b.	Analyses Conducted	13
	c.	Final Designs	15
	d.	Test Procedures	17
	e.	Full-Scale Crash Tests	17
		(1) Glulam Bridge Rail	17
		<u>Test WB-1. Small sedan</u>	17
		<u>Test WB-2. Pickup truck</u>	27
		(2) Modified Kansas Corral Bridge Rail	36
		<u>Test KM-1. Small sedan</u>	36
		Test KM-2. Pickup truck	44
3.	CONCI	LUSIONS AND RECOMMENDATIONS	52
	a.	Conclusions	52
	b.	Recommendations	53
APPE	ENDIX	A COMPUTER SIMULATION RESULTS	54
APPE	ENDIX	B FULL-SCALE CRASH TEST REPORTS	66

34°.

۰.

•7

v.

~ *1*40

APPENDIX	С	SUMMARY	OF	RESULTS,	TEST	WB-1	82
APPENDIX	D	SUMMARY	OF	RESULTS,	TEST	WB-2	95
APPENDIX	Ε	SUMMARY	0F	RESULTS,	TEST	KM-1	108
APPENDIX	F	SUMMARY	0F	RESULTS,	TEST	KM-2	122
REFERENCE	ES.				• • • • •		136

.

F

3

\$

42-34

<u>Figure</u>		<u>Page</u>
1	Glulum bridge rail	4
2a	Modified Kansas Corral bridge rail	5
2b	Modified Kansas Corral bridge rail (continued)	6
2c	Modified Kansas Corral bridge rail (continued)	7
3a	Natchez Trace bridge rail	8
3b	Natchez Trace bridge rail (continued)	9
3c	Natchez Trace bridge rail (continued)	10
4a	Aluminum Tri-Rail bridge rail with sidewalk	11
4b	Aluminum Tri-Rail bridge rail with sidewalk (cont.)	12
5	Graphic determination of snagging potential	14
6	Aluminum Tri-Rail recommended modification	16
7a	Test WB-1 pre-test details	18
7b	Test WB-1 pre-test details (continued)	19
8	WB-1 small sedan test results	21
9a	Test WB-1 post-test details	24
9b	Test WB-1 post-test details (continued)	25
9c	Test WB-1 post-test details (continued)	26
10a	Test WB-2 pre-test details	28
10b	Test WB-2 pre-test details (continued)	29
11	WB-2 pickup truck test results	30
12a	Test WB-2 post-test details	34
12b	Test WB-2 post-test details (continued)	35
13a	Test KM-1 pre-test details	37
13b	Test KM-1 pre-test details (continued)	38
14	KM-1 small sedan test results	40

LIST OF FIGURES (CONTINUED)

<u>Figure</u>		<u>Page</u>
15a	Test KM-1 post-test details	42
15b	Test KM-1 post-test details (continued)	43
16a	Test KM-2 pre-test details	45
16b	Test KM-2 pre-test details (continued)	46
17	KM-2 pickup truck test results	48
18a	Test KM-2 post-test details	50
18b	Test KM-2 post-test details (continued)	51
19a	Modified Kansas Corral bridge rail with 1800-1b (817 kg) computer simulation results	54
19b	Modified Kansas Corral bridge rail with 1800-lb (817 kg) computer simulation results (continued)	55
20a	Modified Kansas Corral bridge rail with 5400-lb (2450 kg) computer simulation results	56
20b	Modified Kansas Corral bridge rail with 5400-lb (2450 kg) computer simulation results (continued)	57
21a	Natchez Trace bridge rail with 1800-lb (817 kg) computer simulation results	58
21b	Natchez Trace bridge rail with 1800-1b (817 kg) computer simulation results (continued)	59
22a	Natchez Trace bridge rail with 5400-1b (2450 kg) computer simulation results	60
22b	Natchez Trace bridge rail with 5400-lb (2450 kg computer simulation results (continued)	61
23a	Aluminum Tri-Rail bridge rail with sidewalk 1800-lb (817 kg) computer simulation results	62
23b	Aluminum Tri-Rail bridge rail with sidewalk 1800-lb (817 kg) computer simulation results (continued)	63
24a	Aluminum Tri-Rail bridge rail with sidewalk 5400-lb (2450 kg) computer simulation results	64
24b	Aluminum Tri-Rail bridge with sidewalk 5400-lb (2450 kg) computer simulation results (continued)	65

LIST OF FIGURES (CONTINUED)

<u>Figure</u>		Page
25	Barrier construction details, test WB-1	85
26	Sequential photographs during impact, test WB-1	86
27	Sequential photographs as viewed from behind the rail, test WB-1	87
28	Summary of results, test WB-1	88
29	Wehicle acceleration plots, test WB-1	89
30	Barrier construction details, test WB-2	98
31	Sequential photographs during impact, test WB-2 (overhead view)	99
32	Sequential photographs, test WB-2 (view from downstream)	100
33	Summary of results, test WB-2	103
34	Vehicle acceleration plots, test WB-2	105
35	Summary of results, test KM-1	111
36	Sequential photographs during impact, test KM-1 (overhead view)	112
37	Sequential photographs, test KM-1 (view from downstream)	113
38	Summary of results, test KM-1	114
39	Vehicle acceleration plots, test KM-1	115
40	Barrier construction details, test KM-2	125
41	Sequential photographs during impact (overhead view),	126
42	Sequential photographs during impact as viewed from downstream, test KM-2	127
43	Summary of results, test KM-2	128
44	Vehicle acceleration plots, test KM-2	129

<u>Table</u>

÷

48°2',

1	Test matrix	2
2	After impact vehicle trajectory, test WB-1	22
3	Permanent barrier deflections, test WB-1	23
4	Vehicle damage measurements, test WB-1	27
5	After impact vehicle trajectory, test WB-2	31
6	Permanent barrier deflections, test WB-2	32
7	Vehicle damage measurements, test WB-2	32
8	After impact vehicle trajectory, test KM-1	41
9	Vehicle damage measurements, test KM-1	44
10	After impact vehicle trajectory, test KM-2	49
11	Vehicle damage measurements, test KM-2	52
12	After impact vehicle trajectory, test WB-1	90
13	Permanent barrier deflections, test WB-1	91
14	Vehicle kinetics data, test WB-1	92
15	Occupant risk data, test WB-1	93
16	Vehicle damage measurements, test WB-1	94
17	After impact vehicle trajectory, test WB-2	101
18	Permanent barrier deflections, test WB-2	102
19	Vehicle kinetics data, test WB-2	104
20	Occupant risk data, test WB-2	106
21	Vehicle damage measurements, test WB-2	107
22	After impact vehicle trajectory, test KM-1	116
23	Vehicle kinetics data (film), test KM-1	117
24	Vehicle kinetics data (transducer), test KM-1	118

.

LIST OF TABLES (CONTINUED)

<u>Table</u>		Page
25	Occupant risk data (film), test KM-1	119
26	Occupant risk data (transducer), test KM-1	120
27	Vehicle damage measurements, test KM-1	121
28	After impact vehicle trajectory, test KM-2	130
29	Vehicle kinetics data (film), test KM-2	131
30	Vehicle kinetics data (transducer), test KM-2	132
31	Occupant risk data (film), test KM-2	133
32	Occupant risk data (transducer), test KM-2	134
33	Vehicle damage measurements, test KM-2	135

-

1. INTRODUCTION AND RESEARCH APPROACH

a. Statement of the Problem

The work reported here is part of the Coordinated Federal Lands Highway Technology Implementation program. It is intended to serve the immediate needs of those individuals who design and construct Federal Lands highways, including Indian Reservation roads, National Park roads and parkways, and forest highways. The results of this study can be used for all of these entities.

A varied assortment of bridge rails, transitions and terminals from approach guardrails to the bridge rail itself are being used on bridges under the jurisdiction of the National Park Service and other Federal agencies. These devices are intended to blend in with the roadside to preserve the visual integrity of parks and parkways. However, few have ever been crash tested. Therefore, this program was instituted to begin an evaluation process to ensure that devices used are safe for the traveling public.

b. Objectives and Scope

25040

The objective of this effort was to crash-test aesthetic bridge rails for roads, under Federal jurisdiction. Four designs were analyzed and evaluated: the Modified Kansas Corral bridge rail, the glulam bridge rail, the Natchez Trace bridge rail, and the Aluminum Tri-Rail bridge rail with sidewalk. Two designs were evaluated by testing: the glulam bridge rail and the Modified Kansas Corral bridge rail. Two full-scale crash tests were conducted with each design.

c. Research Approach and Report Organization

This project was composed of three principal tasks which are discussed below. Section 2 presents a summary of the analyses and tests conducted, and section 3 lists the conclusions and recommendations. Drawings of the evaluated bridges are given in section 2. The results of the computer simulations are presented in appendix A. Appendix B includes a copy of the test report for each of the four tests.

<u>Task A. Barrier analysis and design.</u> Structural analysis and computer simulations were used to evaluate certain barrier designs before testing. These analyses led to some proposed changes in the rail designs to improve their safety performance without significantly affecting aesthetics, construction and/or maintenance costs.

Task B. Full-scale tests. Four full-scale tests were conducted during this program, as shown in table 1. All test vehicles procured during the testing program were 1982 or later models. In addition, all test procedures, test instrumentation, and the test report contents were in accordance with the guidelines in National Cooperative Highway Research Program (NCHRP) Report No. 230, and the American Association of State Highway and Transportation Officials (AASHTO) Guide Specifications for Bridge Railings, 1989. ^(1,2)

<u>No.</u>	<u>Vehicle</u>	Impact <u>Speed</u>	Impact <u>Angle</u>	Barrier Installation
WB-1	1800 1b sedan	50 mi/h	20°	Glulam bridge rail
WB-2	5400 lb pickup	45 mi/h	20°	Glulam bridge rail
KM-1	1800 lb sedan	50 mi/h	20°	Modified Kansas Corral rai
KM-2	5400 lb pickup	45 mi/h	20°	Modified Kansas Corral rai
1 1b =	5400 lb pickup = 0.454 kg h = 0.447 m/s	4 5 mi/h	20°	Modified Kansas Corr

Reporting requirements included the vehicle maximum 50 m/s accelerations and changes in vehicle velocity and momentum. High-speed and real-time films, slides, and still photographs were made of each test. The vehicle crush depth was measured using a minimum of six points before and after each test. The depth measurement points were equally spaced along the length of the damaged area to generally describe the damage penetration profile. In addition, the maximum static crush was measured. The vehicle trajectory after impact was also measured.

One uninstrumented restrained anthropomorphic dummy was used in the driver's seat of each test vehicle to assess the probability of occupant injury. Each dummy was a 50th percentile male. An onboard camera was utilized to record the motions of the dummy.

<u>Task C. Final report.</u> The final task for this contract was preparation of the final report, which describes the tests conducted, and a comprehensive discussion of conclusions and recommendations derived from the effort. In addition, a separate two page summary was prepared that highlights the objectives, research approach, results and conclusions, and which references the final report.

2. SUMMARY OF ANALYSIS

Design reviews, analyses conducted, final designs, test procedures, and test results are briefly described in this section. Detailed information on the test installations and results is contained in appendix B (Full-Scale Crash Test Reports).

a. Design Reviews

Four bridge rail designs were reviewed as part of this contract as listed below:

- 1. Glulam bridge rail
- 2. Modified Kansas Corral bridge rail
- 3. Natchez Trace bridge rail
- 4. Aluminum Tri-Rail bridge rail with sidewalk.

Drawings of each system are presented in figures 1 through 4, a, b, and c respectively. A discussion of the different analyses performed on each system is presented in the next section and the suggested modification to the Aluminum Tri-Rail bridge rail is given in the following section.

<u>Glulam Bridge Rail</u>.

Design calculations were obtained from Wheeler Consolidated Industries, the manufacturer, for this system. These were reviewed prior to testing and no modifications were recommended.

1

Figure 1. Glulam bridge rail.

45.5

64 -<u>-</u>

Curb and rail elevation (Scale $\frac{1}{2}$ in = 1 ft)

Left section

Figure 2a. Modified Kansas Corral bridge rail.

S

3

, All

Figure 2b. Modified Kansas Corral bridge rail (continued).

<u>ي</u>ه دي.

Section details

Figure 2c. Modified Kansas Corral bridge rail (continued).

e-

œ

0

Figure 3a. Natchez Trace bridge rail.

RAL AND POST DETAILS SCALE + 1"+ 1"-0 "

Figure 3b. Natchez Trace bridge rail (continued).

SECTION THRU POSTS SCALE + 1~ 1-0 * (7)& for parts on schurdruckure and uriged

¥

7.0

2.8%

Figure 3c. Natchez Trace bridge rail (continued).

Figure 4a. Aluminum Tri-Rail bridge rail with sidewalk.

2.84

Figure 4b. Aluminum Tri-Rail bridge rail with sidewalk (continued).

×0

Modified Kansas Corral Bridge Rail.

Strength analyses were performed on this system prior to testing to ensure that this design is equal to or superior to the previously tested Modified Kansas Corral.⁽⁹⁾ In addition, a computer simulation was performed to provide insight into vehicle stability while impacting this profile. After reviewing this information, it was determined that this design would perform satisfactorily with no modifications and it was correspondingly evaluated by crash test.

Natchez Trace Bridge Rail.

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. No modifications were recommended for this system. This was not confirmed because no full-scale tests were performed.

<u>Aluminum Tri-Rail Bridge Rail With Sidewalk.</u>

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. Because of limited modeling capabilities of the simulation program, additional review was performed based on guidelines provided in reference 3. From figure 5, this system indicates a high snagging potential. A blockout is recommended for the upper two rails to reduce this potential. This is shown in section 2-c. Full-scale crash tests were not performed on this design.

b. Analyses Conducted

Three types of analyses were performed during this study: strength, computer simulation, and wheel snagging using graphs.

<u>Strength</u>.

Elastic analyses were conducted on the Modified Kansas Corral bridge rail using the BRIDGE program (3) and the yield line analyses used by Hirsch and Bronstad. (4,5) Results from these were compared with the same analyses of the Modified Kansas Corral bridge rail that was tested and reported in reference 3. In all cases, the Western Bridge Rail was equivalent or stronger than the tested rail.

Figure 5. Graphic determination of snagging potential.

Ne.

Computer Simulation.

Computer simulations were performed on the Modified Kansas Corral bridge rail, the Natchez Trace bridge rail, and the Aluminum Tri-Rail bridge rail with sidewalk. NARD was the computer program that was used because of its three-dimensional capability. The impact conditions that were used correspond to Performance Level 1 from the 1989 AASHTO guidelines, the 1800-lb (817-kg) mini-sedan at 50 mi/h (80.5 km/h) and a 20 degree angle and the 5400-lb (2450kg) pickup at 45 mi/h (72.4 km/h) and a 20 degree angle. The profiles of the railings were accurately modeled, while the rails themselves were simplified because of the limited number of barrier elements available in NARD and limited funding available for simulation. This limitation particularly affected the Aluminum Tri-Rail bridge rail. The results of the simulations are presented in appendix A and should be used sparingly to predict trends only. In all cases, the vehicles were smoothly redirected with no indication of vaulting.

<u>Graphs</u>.

240

Guides for wheel snagging were developed in reference 3. Figure 5 presents the design guideline. This was used to determine the potential of the Aluminum Tri-Rail bridge rail for snagging.

c. Final Designs

Every bridge rail reviewed, with the exception of the Aluminum Tri-Rail bridge rail, remained unchanged. The drawings presented in section B represent the final design. The Aluminum Tri-Rail was modified to include blockouts at the top two rails as shown in figure 6. This configuration was not submitted to full-scale crash evaluation.

Figure 6. Aluminum Tri-Rail recommended modification.

标准

d. Test Procedures

Two bridge rail designs were evaluated as part of this contract, the Glulam bridge rail and the Modified Kansas Corral rail. For each design, two tests were conducted, one with an 1800-1b (817-kg) sedan and one with a 5400-1b (2450-kg) pickup truck. The test matrix is presented in section 1.

Impact events were recorded from transducers mounted on the vehicle. Extensive high speed and real time film coverage also documented the barrier, vehicle and dummy behavior. Color slides and black and white photographs were taken before, during and after the test to provide additional documentation.

e. Full-Scale Crash Tests

(1) Glulam Bridge Rail

Ϋ.

3.3

The Glulam bridge rail system was manufactured and provided by Wheeler Consolidated Industries, Inc., of St. Louis Park, Minnesota. The barrier system consists of 18-ft (5.5-m) long by 7-ft (2.1-m) wide by 10-in (25.4-cm) thick laminated wood bridge deck panels. For each test, four panels were used to construct a simulated bridge 72 ft (21.9 m) in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck, according to the instructions given by the manufacturer. Details of the system are shown in figure 1.

<u>Test WB-1.</u> Small sedan. The purpose of this test was to investigate the dynamic interactions of a small car with the bridge rail and curb. The goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The vehicle used in the test was a 1982 Volkswagen Rabbit. The gross test weight, including the dummy and instrumentation, was 1983 lb (900 kg). Figures 7a and 7b contain photographs of the barrier and test vehicle.

Figure 3a. Natchez Trace bridge rail.

RAL AND POST DETAILS SCALE 1 1* 1'-0 *

5

 $\mathcal{C}_{\mathcal{T}}^{(n)}$

ರಸ್ತು

Figure 3b. Natchez Trace bridge rail (continued).

SECTION THRU POSTS SCALE + 1% 1% 0 * (7)s. for ports of experienceurs and unged

¢

x

* 50

Figure 3c. Natchez Trace bridge rail (continued).

Figure 4a. Aluminum Tri-Rail bridge rail with sidewalk.

tit.

Figure 4b. Aluminum Tri-Rail bridge rail with sidewalk (continued).

Modified Kansas Corral Bridge Rail.

Strength analyses were performed on this system prior to testing to ensure that this design is equal to or superior to the previously tested Modified Kansas Corral.⁽⁹⁾ In addition, a computer simulation was performed to provide insight into vehicle stability while impacting this profile. After reviewing this information, it was determined that this design would perform satisfactorily with no modifications and it was correspondingly evaluated by crash test.

Natchez Trace Bridge Rail.

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. No modifications were recommended for this system. This was not confirmed because no full-scale tests were performed.

<u>Aluminum Tri-Rail Bridge Rail With Sidewalk.</u>

Two computer simulations were performed on this design to provide insight into vehicle behavior while impacting this profile. Because of limited modeling capabilities of the simulation program, additional review was performed based on guidelines provided in reference 3. From figure 5, this system indicates a high snagging potential. A blockout is recommended for the upper two rails to reduce this potential. This is shown in section 2-c. Full-scale crash tests were not performed on this design.

b. Analyses Conducted

Three types of analyses were performed during this study: strength, computer simulation, and wheel snagging using graphs.

Strength.

Elastic analyses were conducted on the Modified Kansas Corral bridge rail using the BRIDGE program (3) and the yield line analyses used by Hirsch and Bronstad. (4,5) Results from these were compared with the same analyses of the Modified Kansas Corral bridge rail that was tested and reported in reference 3. In all cases, the Western Bridge Rail was equivalent or stronger than the tested rail.

Figure 5. Graphic determination of snagging potential.

22

: 22/2

Computer Simulation.

Computer simulations were performed on the Modified Kansas Corral bridge rail, the Natchez Trace bridge rail, and the Aluminum Tri-Rail bridge rail with sidewalk. NARD was the computer program that was used because of its three-dimensional capability. The impact conditions that were used correspond to Performance Level 1 from the 1989 AASHTO guidelines, the 1800-lb (817-kg) mini-sedan at 50 mi/h (80.5 km/h) and a 20 degree angle and the 5400-lb (2450kg) pickup at 45 mi/h (72.4 km/h) and a 20 degree angle. The profiles of the railings were accurately modeled, while the rails themselves were simplified because of the limited number of barrier elements available in NARD and limited funding available for simulation. This limitation particularly affected the Aluminum Tri-Rail bridge rail. The results of the simulations are presented in appendix A and should be used sparingly to predict trends only. In all cases, the vehicles were smoothly redirected with no indication of vaulting.

<u>Graphs</u>.

Guides for wheel snagging were developed in reference 3. Figure 5 presents the design guideline. This was used to determine the potential of the Aluminum Tri-Rail bridge rail for snagging.

c. Final Designs

Every bridge rail reviewed, with the exception of the Aluminum Tri-Rail bridge rail, remained unchanged. The drawings presented in section B represent the final design. The Aluminum Tri-Rail was modified to include blockouts at the top two rails as shown in figure 6. This configuration was not submitted to full-scale crash evaluation.

Figure 6. Aluminum Tri-Rail recommended modification.

2,54

d. Test Procedures

Two bridge rail designs were evaluated as part of this contract, the Glulam bridge rail and the Modified Kansas Corral rail. For each design, two tests were conducted, one with an 1800-1b (817-kg) sedan and one with a 5400-1b (2450-kg) pickup truck. The test matrix is presented in section 1.

Impact events were recorded from transducers mounted on the vehicle. Extensive high speed and real time film coverage also documented the barrier, vehicle and dummy behavior. Color slides and black and white photographs were taken before, during and after the test to provide additional documentation.

- e. Full-Scale Crash Tests
- (1) Glulam Bridge Rail

2523

The Glulam bridge rail system was manufactured and provided by Wheeler Consolidated Industries, Inc., of St. Louis Park, Minnesota. The barrier system consists of 18-ft (5.5-m) long by 7-ft (2.1-m) wide by 10-in (25.4-cm) thick laminated wood bridge deck panels. For each test, four panels were used to construct a simulated bridge 72 ft (21.9 m) in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck, according to the instructions given by the manufacturer. Details of the system are shown in figure 1.

<u>Test WB-1.</u> Small sedan. The purpose of this test was to investigate the dynamic interactions of a small car with the bridge rail and curb. The goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The vehicle used in the test was a 1982 Volkswagen Rabbit. The gross test weight, including the dummy and instrumentation, was 1983 lb (900 kg). Figures 7a and 7b contain photographs of the barrier and test vehicle.

Figure 7a. Test WB-1 pre-test details.

Figure 7b. Test WB-1 pre-test details (continued).

Test results are summarized in figure 8. Impact conditions were 59.2 mi/h (95.3 km/h) at a 20.0° impact angle. The vehicle impacted the barrier 29 inches downstream of post 5. The vehicle remained in contact with the barrier for 12.5 ft (3.8 m) before redirection at a -12.0° angle. During the impact sequence, the right front tire/wheel became engaged between the top of the curb and the bottom of the rail. Measurements of the tire/wheel path indicated a maximum of 5 in (13 cm) of lateral engagement. Since the curb is 12 in (30.5 cm) wide, there was no propensity for the wheel to snag on a post during impact.

21

2

Test No	, 1968
Member 6-in (15.2 cm) x10-3/4-in (27.3) Leminate	boow bu
Length - ft [m]) [5.5]
Maximum Deflections - in. (cm)	
Permanent	5 (3.8)
Dynamic	
Poet	
Details of the posts, blockouts, curb, and deck are include figure 8.	d in
Vehicle	tabbit
Ness - (b [kg]	
Test Inertia	8 (825)
Dummy	
Gross Test Weight	3 19001
Speed - mi/h (km/h)	(95.3)

e a construction and a construction of the con

Angle - degre	es -																							
Impect			•	•	• •							•	•	•		•				•		•	• •	20
Exit	• • •	•••	•	•	•	• •	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	12.0
Occupent Impe	ct Velo	city	, -	f	t/1		(m/	/#]																
Forward	(accel)	•																		•	10	1.6	. [·	3.21
Lateral																								
Occupent Ride	idown Ac	cele)ra	tí	on		- 1	9' 1						•										
Forward	(accel)							•																-0.7
Lateral																								
Naximum 50 m/	's Avg A	ccel	ler	et	10	ne	•	9	•															
Longitud	linel [®] (e	cce	0																					-5.0
Lateral																								
Vehicle Dame																								
																							01	- FR - 4
	••••																				•			FREE
TUI .	• • • •	• •	•	•	•	•	•	٠	•	٠	•	٠	٠	•	٠	٠	٠	•	•	•	•		VI	TREE

Figure 8. WB-1 small sedan test results.

No significant pitch, roll or yaw was noted during impact and redirection. The vehicle came to rest 140 ft (43 m) downstream of the impact point and 50 ft (15 m) out from the barrier plane. The vehicle brakes were applied at approximately 100 ft (30 m) after impact. Table 2 presents the after impact vehicle trajectory.

Location'	Distance ²
0	0
10	-0.2
20	1.5
30	3.3
40	5.2
50	9.0
60	10.5
70	12.8
80	16.1
90	19.8
100	24.5
¹ Distance measured in the downst of impact.	tream direction with O as the point
² Measured perpendicular to the the impact side of the vehicle.	barrier plane at the front tire on

Maximum dynamic barrier deflection observed from the overhead data camera was 6.3 in (16.0 cm). Measurements of the barrier after the test showed a maximum of 1.5 in (3.8 cm) permanent deflection. Maximum 50 m/s average accelerations from transducer data were -5.0 g's (longitudinal) and 7.6 g's (lateral). These results are exhibited in table 3.

<u>Post/Location</u>	Deflection
3	0.3
4	0.4
5	0.5
6	0.8
7	1.5
8 9	1.3
9	0.8
10	0.4
11	0.2

Figures 9a through 9c present photographs of damage to the vehicle and barrier. Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of post 3 to post 9 with a maximum separation of 0.5 in (1.3 cm) on the top surface of the deck, approximately 3 ft (0.9 m) downstream from post 6. Maximum separation observed on the bottom surface of the deck was 0.1 in (0.3 cm). Several drive spikes in the impact affected area of the deck showed evidence of minor pullout.

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The windshield was cracked because of a pillar deformation. Both right side tires were blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Measurements of vehicle damage are given in table 4.

Figure 9a. Test WB-1 post-test details.

Figure 9b. Test WB-1 post-test details (continued).

Figure 9c. Test WB-1 post-test details (continued).

<u>Befo</u>	<u>re Test</u>	<u>After Test</u>	Crush
L	52	52	Not Applicable
C-1 C-2	2.0	2.0	0.0
C-2	0.0	5.6	5.6
C-3	0.0	6.0	6.0
C-4	0.0	7.5	7.5
C-5	3.0	10.0	7.0
C-6	4.0	12.1	8.1
Maximu center		.0 at a location of 15	.0 to the right of vehicle

<u>Test WB-2.</u> Pickup truck. The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The barrier selected was the same as that used in test WB-1. However, one deck panel with curb/rail was replaced in the impact area to ensure system integrity. The vehicle used was a 1984 Ford F150 pickup truck. The gross test weight, including the dummy and instrumentation, was 5419 lb (2458 kg). Figures 10a and 10b contain photographs of the barrier and test vehicle.

Test results are summarized in figure 11. Impact conditions were 47.5 mi/h (76.4 km/h) at a 20° impact angle. The vehicle impacted the barrier midway between post 5 and 6. The vehicle remained in contact with the barrier

27

(a....;

Figure 10a. Test WB-2 pre-test details.

Figure 10b. Test WB-2 pre-test details (continued).

30

Test No. UB-2 Test Date . Installation Length - ft [m] . Beam
Nember 6-in (15.2 cm) x 10-3/4 -in (27.3 cm) laminated wood
Length - ft [m]
Maximum Deflections - in. [cm] Permanent
figure 11.
Vehicle
Mees - ib [kg]
Test Inertia
Dummy
Gross Test Weight
Speed - mi/h (km/h)

Angle - degrees		
Impact		20
Exit	••••••••••••••••••••••	-4.9
Occupent Impect Velocity - ft/	/s [m/s]	
Forward (accel)	8.1 [2.5]
Lateral (accel)	17.2 [-	5.21
Occupant Ridedown Acceleration	ns - g's	
Forward (accel)		-1.7
Lateral (accel)	· · · · · · · · · · · · · · · · · · ·	6.9
Maximum 50 m/s Avg Acceleratio	ons - g's	
· •		.3 2
•		
		3.6
Vehicle Damage		
TAD		FR-4
VDI		REEG

Figure 11. WB-2 pickup truck test results.

for 15.0 ft (4.6 m) before redirection at an angle of -4.9° . The vehicle showed no tendency to snag on the curb or posts during the impact sequence. No significant pitch, roll or yaw was noted during impact and redirection. The vehicle came to rest 130 ft (40 m) downstream of the impact point and 48 ft (15 m) out from the barrier plane. The vehicle brakes were applied at approximately 100 ft (30 m) after impact. Table 5 presents the vehicle trajectory after impact.

Table 5. After impact	vehicle trajectory, test WB-2.
Location'	<u>Distance</u> ²
0 10 20 30 40 50 60 70 80 90 100	0 -0.1 0.2 1.5 2.0 3.4 1.4 0.0 -3.0 -6.1 11.2
¹ Distance measured in the downs of impact.	tream direction with 0 as the point
² Measured perpendicular to the the impact side of the vehicle.	barrier plane at the front tire on
All dimensions are in feet. 1 ft	: = 0.305 m

Maximum dynamic barrier deflection observed from the overhead data camera was 8.5 inches (21.6 cm). Measurements of the barrier after the test, listed in table 6, show a maximum permanent deflection of 2.3 in (5.8 cm). Maximum 50 ms average accelerations from transducer data were -3.2 g's (longitudinal) and 5.2 g's (lateral).

31

iero

Table 6. Permanent barri	er deflections, test WB-2.
<u>Post/Location</u>	Deflection
3	0.5
4 5 6	0.8 1.0 1.5
7 8	2.3
9 10	1.5 1.0
11 All dimensions are in in	0.5

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The windshield remained intact, and the right front tire was blown out during impact. The tire remained on the wheel during redirection, but became detached during subsequent vehicle retrieval from the runout path. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 7.

Table 7. Vehicle damage measurements, test WB-2. Before Test After Test Crush 58 58 Not Applicable L C-1 0.4 0.3 -0.1 C-2 0.8 3.3 +2.50.0 C-3 2.5 +2.5 0.0 4.0 C-4 +4.00.0 7.1 +7.1 C-5 1.5 11.5 +10.0C-6

Maximum crush of 15.8 at a location of 25 to the right of vehicle centerline.

All dimensions are in inches. 1 in = 2.54 cm

Figures 12a and 12b present photographs of damage to the vehicle and barrier. Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of post 3 to post 9 with a maximum separation of 0.8 in (2.0 cm) on the top surface of the deck about 3 ft (0.9 m) downstream from post 6. Maximum separation observed on the bottom surface of the deck was 0.1 in (0.3 cm). Several drive spikes in the impact affected area of the deck showed evidence of minor pullout.

Figure 12a. Test WB-2 post-test details.

Figure 12b. Test WB-2 post-test details (continued).

(2) Modified Kansas Corral Bridge Rail

The Modified Kansas Corral bridge rail consisted of concrete posts, rails and a 6 in (15 cm) curb, and was constructed on a simulated bridge deck. The total length of the system was 69 ft (21 m). Details of the system are shown in figure 2.

<u>Test KM-1.</u> Small sedan. The purpose of this test was to investigate the dynamic interactions of the small car with the bridge rail and curb. The goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

The vehicle used in this test was a 1982 Honda Civic. Gross test weight, including the dummy and the instrumentation, was 1990 lb (902 kg). Figures 13a and 13b contain photographs of the barrier and test vehicle.

Figure 13a. Test KM-1 pre-test details.

Figure 13b. Test KM-1 pre-test details (continued).

Test results are summarized in figure 14. Impact conditions were 51.0 mi/h (82.0 km/h) at a 20.5° impact angle. The vehicle impacted the barrier midway between posts 7 and 8. The vehicle remained in contact with the barrier for 13.8 ft (4.2 m) before redirection at a -3.7° angle. During the impact sequence, the right front tire/wheel became engaged between the top of the curb and the bottom of the rail, with the wheel hub contacting post 8. Although post 8 exhibited minor gouging, observation of the test film showed no significant snag potential.

2.5

Gest No
leet Date
Installation Longth - ft [m]
Number 9-in (22.8 cm)x 10-in (25.4 cm) reinforced concrete
Length - ft [m] 2 8 24 (7.3) and 1 8 16 (4.9)
Maximum Deflections - in. [cm]
Permanent
Dynamic
Poet
Details of the posts, blockouts, curb, and deck are included in figure 14.
Vehicle
Mees - lb (kg)
Test Inertia
Dummy
Gross Test Weight
Speed - mi/h (km/h)

Angle - de	grees															
Impec						•								•		20.5
Occupent I	mpect Velocit	y - 1	it/s	(m/ :	•)											
Forwe	rd (film/acce	υ.			• •		• •			10	.6	Ø	.2	1/1	9.2	[2.8]
Later	el (film/acce	υ.	••	•••	• •	••	•	-1	15.0	\$ E	-4	.8]	1-	16	.7	[-5.1]
Occupant #	idedown Accel	erati	ione	· 9	۰.											
Form	rd (accel) .															-1.1
Later	al (accel) .	••	•••	•••	• •	••	• •	•	•	• •	•	•	•	•	• •	10.0
Neximum 50	m/s Avg Acce	lera	tion		a's											
	tudinal (acce				•		-						-		-2.	8/-5.4
-	al (accel) .															
		•••	•••	•••	•	•••	•	••	•	• •	•	•	•	•	-	
Vehicle De	mage															
TAD							•			• •		•			0	1-FR-4

Figure 14. KM-1 small sedan test results.

The vehicle remained stable during impact and redirection. It came to rest 150 ft (46 m) downstream of the impact point and 10.5 ft (3.2 m) out from the barrier plane. The vehicle brakes were not applied after impact. Table 8 presents the vehicle trajectory after impact.

Table 8.After impact vehicle trajectory, test KM-1.Location'Distance20010 -0.2 200.8301.5402.3503.2604.0704.8805.6906.31006.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20 0.8 30 1.5 40 2.3 50 3.2 60 4.0 70 4.8 80 5.6 90 6.3
30 1.5 40 2.3 50 3.2 60 4.0 70 4.8 80 5.6 90 6.3
40 2.3 50 3.2 60 4.0 70 4.8 80 5.6 90 6.3
40 2.3 50 3.2 60 4.0 70 4.8 80 5.6 90 6.3
50 3.2 60 4.0 70 4.8 80 5.6 90 6.3
60 4.0 70 4.8 80 5.6 90 6.3
70 4.8 80 5.6 90 6.3
80 5.6 90 6.3
90 6.3
100 6.9
¹ Distance measured in the downstream direction with O as the point of impact.
² Measured perpendicular to the barrier plane at the front tire on the impact side of the vehicle.
All dimensions are in feet. 1 ft = 0.305 m

The barrier did not deflect during impact. The film data indicated maximum 50 m/s average accelerations of -2.8 g's (longitudinal) and 4.0 g's (lateral). Maximum 50 m/s average accelerations from transducer data were - 5.4 g's (longitudinal) and 8.1 g's (lateral).

Figures 15a and 15b show photographs of vehicle and barrier damage. Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging was noted on post 8. Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered undamaged.

Figure 15a. Test KM-1 post-test details.

Figure 15b. Test KM-1 post-test details (continued).

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The right front tire was blown out during impact, and the A-frame was displaced rearward to the fender well. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 9.

	<u>Before Test</u>	<u>After Test</u>	<u>Crush</u>
L	48	48	Not Applicabl
C-1	1.3	4.0	2.7
C-2	0.0	2.8	2.8
C-3	0.0	-0.8	+0.8
C-4	0.0	8.8	8.8
C-5	0.3	8.5	8.2
C-6	0.3	10.0	9.7

<u>Test KM-2. Pickup truck.</u> The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system; (2) the vehicle should remain upright throughout the event; and (3) the vehicle after-collision trajectory should not present an undue hazard to other traffic.

The barrier was the same as that used in test KM-1. The vehicle used was a 1984 Ford F150 pickup truck. Gross test weight, including the dummy and instrumentation, was 5419 lb (2458 kg). Figures 16a and 16b contains photographs of the barrier and the test vehicle.

Figure 16a. Test KM-2 pre-test details.

5.25

Figure 16b. Test KM-2 pre-test details (continued).

Test results are summarized in figure 17. Impact conditions were 46.6 mi/h (74.9 km/h) at a 20.0° impact angle. The vehicle impacted the barrier 0.8 ft (0.2 m) downstream of post 7. The vehicle remained in contact with the barrier for 15.0 ft (4.6 m) before redirection at a -2.4° angle. The vehicle showed no tendency to snag on the curb or posts during the impact sequence. No significant pitch, roll or yaw was noted during impact and redirection.

94. S

Figure 17. KM-2 pickup truck test results.

The vehicle came to rest 190 ft (58 m) downstream of the impact point and 35 ft (11 m) out from the barrier plane. The vehicle brakes were applied at approximately 130 ft (40 m) after impact. Table 10 present the vehicle trajectory after impact. The barrier did not deflect during the impact. Film data indicated maximum 50 m/s average accelerations of -2.7 g's (longitudinal) and 4.9 g's (lateral). Maximum 50 m/s average accelerations from transducer data were -3.4 g's (longitudinal) and 8.8 g's (lateral).

Table 10. After impact vel	nicle trajectory, test KM-2.
Location ¹	Distance ²
0 10 20 30 40 50 60 70 80 90 100	0 -0.3 1.0 2.3 2.4 3.3 4.3 5.2 6.3 7.5 8.8
'Distance measured in the downtown impact.	
² Measured perpendicular to the bar the impact side of the vehicle.	rier plane at the front tire on
All dimensions are in feet. 1 ft :	

Figures 18a and 18b present photographs of damage to the vehicle and barrier. Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging from wheel contact was noted on the lower edge of the rail in the impact area. Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered undamaged.

Figure 18a. Test KM-2 post-test details.

Figure 18b. Test KM-2 post-test details (continued).

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The front bumper was deformed inward at the impact area. The right front tire was blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are listed in table 11.

L	56	56	Not Applicable
C-1	2.0	3.8	1.8
C-2	1.0	5.5	4.5
C-3	0.0	4.0	4.0
C-4	0.0	3.5	3.5
C-5	1.0	15.6	14.6
C-6	2.0	14.0	12.0
aximum enterl		location of 25.0 to	the right of vehicle

3. CONCLUSIONS AND RECOMMENDATIONS

Two bridge rail designs have been evaluated using full-scale tests employing both a small sedan and a pickup truck. Also, analyses of two additional designs have been conducted. Conclusions and recommendations based on the results of this effort are presented below.

a. Conclusions

The Glulam bridge rail and the Modified Kansas Corral bridge rail passed both the small sedan and the pickup truck full-scale tests. The rails did not fail in any of the tests, and the vehicle behavior during and after impact was, in all cases, acceptable. Analyses conducted on the Modified Kansas Corral bridge rail indicated that it was equally as strong or stronger than the Modified Kansas Corral rail tested in reference 3. Computer simulation on the Modified Kansas Corral bridge rail and the Natchez Trace bridge rail indicated that the vehicle would be redirected with no vaulting.

The Aluminum Tri-Rail bridge rail has a high snagging potential according to guidelines developed in reference 3.

b. Recommendations

Because the Modified Kansas Corral and Glulam bridge rail designs passed the full-scale tests, they should both be certified as acceptable for use on Federal Lands highways.

Based on the analyses conducted, the Natchez Trace bridge rail should be tested in its current design to Performance Level 1 of the 1989 AASHTO guide specifications.

The Aluminum Tri-Rail bridge rail should be modified as recommended and submitted for full-scale testing to Performance Level 1.

APPENDIX A: COMPUTER SIMULATION TEST RESULTS

Figure 19a. Modified Kansas Corral bridge rail with 1800-1b (817kg) computer simulation results.

88./r

Figure 19b. Modified Kansas Corral bridge rail with 1800-1b (817kg) computer simulation results (continued).

Figure 20a. Modified Kansas Corral bridge rail with 5400-1b (2450kg) computer simulation results.

Figure 20b. Modified Kansas Corral bridge rail with 5400-1b (2450kg) computer simulation results (continued).

60.67

Figure 21a. Natchez Trace bridge rail with 1800-1b (817kg) computer simulation results.

848.

Figure 21b. Natchez Trace bridge rail with 1800-1b (817kg) computer simulation results (continued).

te es

Figure 22a. Natchez Trace bridge rail with 5400-1b (2450kg) computer simulation results.

(4079) (4079)

Figure 22b. Natchez Trace bridge rail with 5400-1b (2450 kg) computer simulation results (continued).

Figure 23a. Aluminum Tri-Rail bridge rail with sidewalk 1800-1b (817 kg) computer simulation results.

行动

Figure 23b. Aluminum Tri-Rail bridge rail with sidewalk 1800-1b (817kg) computer simulation results (continued).

Figure 24a. Aluminum Tri-Rail bridge with sidewalk 5400-1b (2450 kg) computer simulation results.

Figure 24b. Aluminum Tri-Rail bridge with sidewalk 5400-lb (2450 kg) computer simulation results (continued).

APPENDIX B: FULL-SCALE CRASH TEST REPORTS

TO: Mr. Charles McDevitt, P.E., FHWA

FROM: Ken Johnson

SUBJECT: Timber Bridge Rail Details

Transmitted herewith are the DRAFT calculations of the bridge rail. Please give me a call ((218) 927-3370) to help explain any of those areas which may not be clear.

Thank you,

WHEELER CONSOLIDATED, INC.

Kenneth Johnson

TYPICAL CROSS SECTION OF CURB AND RAIL

The indicated load of 17,700 pounds is the estimated maximum lateral load from a 1,800 pound vehicle traveling at 60 MPH and striking the rall at 20°.

TABLE NO. 1 (LOAD ON POST BOLT)

 $P = \frac{17,700 \text{ x C}}{B}$

DECK THICKNESS (T)	DIMENSION B = 2/3(T + 8.25)	DIMENSION A • B - 4.25"	DIMENSION C - 20.38" + B	LOAD ON POST BOLT (LBS.) - P
10"	12.17	3.92	32.55	47,341
12"	13.50	5.25	33.88	44,420
14"	14.83	6.58	35.21°	42,024
16"	16.17"	7.92	36.55	40,008
18"	17.50	1.25	57.85	36,313

NOTE: The 1 1/4" diameter by 26" Dome Head Bolt connecting the rail post to

进;

-

the curb has a Root Area of 0.890 sq. in. and a Tensile Stress Area of .969 sq. in. The minimum ultimate stress for A 325 in applied tension is 120,000 psi (.25 to 1"dia. bolts): The minimum ultimate stress for A 325 in applied tension is 105,000 psi (.25 to 1"dia. bolts); The minimum ultimate stress for A 325 in applied tension is 60,000 psi Allowable load based on Tensile Stress Area. = .969 x 105,000 = 101,175 pounds. Allowable load based on Tensile Stress Area. = .969 x 60,000 = 58,140 pounds.

ULTIMATE UNIT STRESSES:

Ref. Ultimate stress values from page 4-15-WOOD Handbook, Forest Products Laboratory,

Specie - Douglas-fir

Modulus of rupture (F_b) = 12,800 psi. Modulus of elasticity (E) = 1,970,000 psi. Compression parallel to grain, max. crushing strength = 7,260 psi. Compression perpendicular to grain, at portional limit (F_c) = 870 psi. Shear parallel to grain, max. shearing strength (F_v) = 1,380 psi.

BENDING STRESS COMPUTATIONS: (formula from AISC, 8th. Ed., page 2-124) Maximum moment = $M = \frac{13 \text{ PL}}{64} = \frac{13 \times 17,700 \times 6 \times 12}{64} = 258,863 \text{ in-lbs.}$ Section modulus = $S = \frac{bd}{6}^2 = \frac{10.75 \times 6^2}{6} = 64.5 \text{ in.}^3$ $f_{ij} = \frac{258,863 \text{ in-lbs.}}{64.5 \text{ in.}^3} = 4,013 \text{ psi} < 12,800 \text{ psi}$ OK

HORIZONITAL SHEAR

Check with load at 3d = 1/4 L = 1.5' from support.

$$V = R = \frac{17,700 \times 4.5}{6} = 13,275 \text{ lbs.}$$

POST DESIGN:

Check bending moment at 1 1/4" bolt hole. Maximum moment = $M = 17,700 \times 20.38$ " = 360,726 in-lbs. Net section of post = 8" - 1 1/4" = 6 3/4"

Section modulus = S = $\frac{bd^{2}}{6} = \frac{6.75 \times 12^{2}}{6} = 162$ in.³

 $f_{b} = \frac{M}{S} = \frac{360,726 \text{ in-lbs.}}{162 \text{ in.}^3} = 2,227 \text{ psl.} < 12,800 \text{ psi}$ OK

HORIZONTAL SHEAR

V = 17,700 lbs.

 $f_v = \frac{3V}{2bd} = \frac{3 \times 17,700}{2 \times 8 \times 12} = 277 \text{ psi} < 1,380 \text{ OK}$

LOAD ON 1 1/4" POST BOLT:

Ultimate unit stress for A 325 Steel bolt (1.25" dia.) in tension = 105,000 psi. Load on bolt (from sheet 1 of 16 sheets) = 47,341 lbs.

Net section required = $\frac{47,341 \text{ lbs.}}{105,000 \text{ psi}} = 0.45 \text{ sq. in.}$

Tensile Area of 1 1/4" bolt = 0.969 sq. in. (AISC, 8th. Ed., page 4-141)

WASHER DESIGN FOR POST BOLT:

Try 6" X 8"

<u>47,341 lbs.</u> = 986 psi > 870 psi NOT OK 48 sq. in.

CURB TO FLOOR SPLIT RING CONNECTIORS:

Design Value/Ultimate Value = 4.0 to 4.5 (page 7-18 WOOD Handbook)

1. Seasoned lumber 3. Angle of load to grain = 90°

2. Group "B" species 4. Over 3" thick both faces

Allowable load on 4" split ring connector and 3/4" bolt = 3,360 x 4 = 13,440 lbs.

Number of bolts required = $\frac{V}{\text{Allowable}} = \frac{17,700}{13,440} = 1.32 \text{ Bolts}$

Use 4 bolts, two on each side.

CURB TO FLOOR BOLTS:

Check bolts in tension, use ASTM A 325 Bolts

 $\frac{17,700 \text{ lbs. x } 20.38 \text{ in.}}{6 \text{ in.}} = 60,121 \text{ pounds to be resisted by bolts}$

Tensile Stress Area for 3/4" diameter bolt = 0.334 sq. in. Allowable load for 3/4" diameter bolt = 120,000 x 0.334 = 40,080 lbs. per bol

CHECK WITHDRAWAL FORCES IN DECK:

Compute withdrawal resistance of 3/4" x 30" Drive Spikes

P. = Ultimate withdrawal resistance WOOD Handbook, page 7-6 $R_{\rm w}$ = 6,600 x G² x D x L Where G = Specific gravity = .49, D =, Diameter = .75" $P_{w} = 6,600 \times .49^2 \times .75 \times 1 = 1,188$ ibs./in. Ultimate Value.

Pw= 1,188 x (6 + 17 + 17) = 47,520 pounds > 17,700 pounds OK

Compute withdrawal resistance of 3/8" x 15" Deck Dowels

P. = Ultimate withdrawal resistance WOOD Handbook page 7-6

 $P_w = 6,600 \times G^2 \times D$ Where G = Specific gravity = .49, D =, Diameter = .375" $R_{\rm w} = 6,600 \text{ x}.49^2 \text{ x}.375 \text{ x} 1.0 = 594 \text{ lbs./in.}$ UltimateValue.

	TOTAL MOMENT.	RESISTING	ESISTING MOMENT		
DECK THICKNESS	TO BE RESISTED (T* 26.63)P in-ba	FROM DOWELS (E + F) 12x 4,158 in-ba	FROM DRIVE SPIKES 3 [(1/2) x 40 x 1,186] in-ba.	RESISTING. MOMET. in-bs.	
10"	683,751	498,960	712,800	1,211,760	
12"	719,151	598,752	855,380	1,454,112	
16"	754,551.	698,544	997,920	1,690,464	
16"	789,951	798,336	1,140, 58 0	1,938,816	
18"'	825,951	898().20	1,283,940	2,181,368	

TABLE NO. 2 (DECK RESISTANCE TO BENDING MOMENT):

TYPICAL CROSS SECTION OF CURB AND RAIL

The indicated load of 32,000 pounds is the estimated maximum. lateral load from a 5,400 pound vehicle traveling at 60 MPH and striking the rail at 20°:

TABLE NO. 1 (LOAD ON POST BOLT)

 $\mathsf{P} = \frac{32,000 \text{ x C}}{\mathsf{B}}$

DECK THICKNESS (T)	DIMENSION B - 2/3(T + 8.25)	Dimension A = B - 8.25"	DIMENSION C - 20.38" * B	LOAD ON POST BOLT (LBS.) - P
10"	12.17"	397	32.55	85,588.
12	13.50	5.25	33.88**	80,308
1 -	14.83"	6.58	\$5.21-	75,976
167	16.17**	7.92	36.55**	72,391
18"	17 .50 °'	125	37.84T	69,256

NOTE: The 1 1/4" diameter by 26" Dome Head Bolt connecting the rail post to

the curb has a Root Area of 0.890 sq. in. and a Tensile Stress Area of .969 sq. in. The minimum ultimate stress for A 325 in applied tension is 120,000 psi (.25" to 1" dia. bolts). The minimum ultimate stress for A 325 in applied tension is 105,000 psi. (> 1" dia. bolts). The minimum ultimate stress for A 307 in applied tension is 60,000 psi. Allowable load based on Tensile Stress Area = .969 x 105,000 = 101,175 pounds. Allowable load based on Tensile Stress Area = .969 x 60,000 = 58,140 pounds.

TYPICAL CROSS SECTION OF CURB AND RAIL

	TOTAL MOMENT	RESISTING	TOTAL	
DECK THICKNESS in	TO BE RESISTED (7+28.63)P n-ba	FROM DOWELS (E + F) 12x 4,158 n-bs.	FROM DRIVE SPIKES 3 [(1/2) x 40 x 1,188] in-ba	RESISTING MOMET in-ba
10"	1,236,160	498,960	712,800	1,211,760
12"	1,300,160	598,752	855,360	1,454,112
14"	1,354,160	698,544	997,920	1,696,484.
16"	1,428,160	796,336	1,140,480	1,938,816
16"'	1,492,160	894,128	1,283,940	2,181,168

TABLE NO. 2 (DECK RESISTANCE TO BENDING MOMENT):

·***

ELEVATION VIEW CURB AND SCUPPER ASSEMBLY DETAIL

- Prefab Timber Deck Panels

NOTE:

The prefabricated deck panels to be dowel. laminated using 3/8" x 15" galvanized dowels.

DESIGN NOTES:

Rail posts spaced maximum of 6 feet.

Tabulated design values for the strength properties of the timber components are to be modified where appropriate using Duration-of-Load Factor ((1.65) for 5 minute loading and horizontal shear adjustment factor of 1.67.

TYPICAL CROSS SECTION OF CURB AND RAIL

The indicated load of 60,500 pounds is the estimated maximum lateral load from a 18,000 pound vehicle traveling at 50 MPH and striking the rail at 20° with center of mass 49" above bridge deck.

TABLE NO. 1 (LOAD ON POST BOLT)

 $P = \frac{72,000 \text{ x C}}{B}$

DECK THICKNESS (7)	DIMENSION 8 = 2/3(T + 8.25);	DIMENSION A = B - 8.25"	DIMENSION C = 20.36" + B	LOAD ON POST BOLT (LBS.) - P
10**	12.17"	3.92	32.55	192,572
12"	13.50"	\$ <i>2</i> 5	39.88"	180,693
HC.	14.85"	6.58"	35.21	170,945
16 **	16.17"	7. 92 °	36.55"	162,746
18-	17.50	1.25"	37.88	155,849

NOTE: The 1 1/4" diameter by 26" Dome Head Bolt connecting the rail post to the curb has a Root Area of 0.890 sq. in. and a Tensile Stress Area of .969 sq. in: The minimum ultimate stress for A 325 in applied tension is 120,000 pai (.25" to 1"dia. bolta)" The minimum ultimate stress for A 325 in applied tension is 105,000 pai. (.> 1"dia. bolt)

The minimum ultimate stress for A 307 in applied tension is 60,000 pai Allowable load based on Tensile Stress Area. - .969 x 105,000 - .101,175 pounds. Allowable load based on Tensile Stress Area. - .969 x 60,000 - 58,140 pounds. Specie - Douglas-fir

Modulus of rupture (F_b) = 12,800 psi Modulus of elasticity (E) = 1,970,000 psi Compression parallel to grain, max. crushing strength = 7,260 psi Compression perpendicular to grain, at portional limit (F_c) = 870 psi Shear parallel to grain, max. shearing strength (F_v) = 1,380 psi

RARLING DESIGNE. Rail post spacing. 6' 0" - 6' 0"

BENDING STRESS COMPUTATIONS: (formula from AISC, 8th Ed. page 2-124) Maximum moment = $M = \frac{13 \text{ PL}}{64} = \frac{13 \text{ x } 72,000 \text{ x } 6 \text{ x } 12}{64} = 1,053,000 \text{ in-lbs.}$ Section modulus = $S = \frac{\text{bd}^{2}}{6} = \frac{10.75 \text{ x } 6^{2}}{6} = 64.5 \text{ in.}^{3}$ $f_{b} = \frac{1,053,000 \text{ in-lbs.}}{64.5 \text{ in.}^{3}} = 16,326 \text{ pst} > 12,800 \text{ psl}$ NOT OK

HORIZONTAL SHEAR:

ويربيه

Check with load at 3d = 1/4 L = 1.5 from support.

$$V = R = \frac{72,000 \times 4.5}{6} = 54,000 \text{ Hz}.$$

Ref. Ultimate strass values from page 4-15-WOOD Handbook, Forest Products Laboratory

Specie - Douglas-fir

Modulus of rupture (F_b) = 12,800 psi Modulus of elasticity (E) = 1,970,000 psi Compression parallel to grain, max. crushing strength = 7,260 psi Compression perpendicular to grain, at portional limit (F_c) = 870 psi Shear parallel to grain, max. shearing strength (F_v) = 1,380 psi

BENDING STRESS COMPUTATIONS: (brmula from AISC, 8th Ed., page 2-124) Maximum moment = $M = \frac{13}{64} PL = \frac{13 \times 72,000 \times 6 \times 12}{64} = 1,053,000 \text{ in-lbs.}$ Section modulus = $S = \frac{bd^{-2}}{6} = \frac{10.75 \times 6^2}{6} = 64.5 \text{ in.}^3$ $f_0 = \frac{1,053,000 \text{ in-lbs.}}{64.5 \text{ in.}^3} = 16,326 \text{ psl.} > 12,800 \text{ psl.}$ NOT OK

HORIZONTAL SHEAR

Check with load at 3d = 1/4 L = 1.5' from support.

$$V = R = \frac{72,000 \times 4.5}{6} = 54,000 \text{ kbs.}$$

POST DESIGNE.

Check bending moment at 1 1/4" bolt hole. Maximum moment = M = 72,000 x 20.38" = 1,487,360 in-lbs. Net section of post = 8" - 1 1/4" = 8 3/4"

Section modulus = S =
$$\frac{bd^{2}}{6} = \frac{6.75 \times 12^{2}}{6} = 162 \text{ in.}^{3}$$

$$f_{\rm b} = \frac{M}{S} = \frac{1.487,360 \text{ in-lbs.}}{162 \text{ in.}^{3!}} = 9,058 \text{ psl.} < 12,800 \text{ psl}$$
 OK

HORIZONTAL SHEARE

V = 72,000 lbs.

 $f_v = \frac{3V}{2bd} = \frac{3 \times 72,000}{2 \times 8 \times 12} = 1,125 \text{ psl} < 1,380 \text{ OK}$

LOAD ON 1 1/4" POST BOLT:

Ultimate unit stress for A 325 Steel bolt (1.25" dia.) in tension = 105,000 psi. Load on bolt (from sheet 11 Of 16 sheets) = 192,572 lbs.

Net section required = $\frac{192,572 \text{ lbs.}}{105,000 \text{ psi}} = 1.83 \text{ sq. in.} > 0.969 \text{ NOT OK!}$

Tensile Area of 1 1/4" bolt = 0.969 sq. in. (AISC, 8th. Ed., page 4-141)

WASHER DESIGN FOR POST BOLT:

Try 6" X 8"

192,572 lbs. = 4,012 psi > 870 psi. NOT OK 48 sq. in.

CURB TO FLOOR SPLIT RING COMMECTIORS:

Design Value/Ultimate Value = 4.0 to 4.5 (page 7-18 WOOD Handbook)

1. Seasoned lumber 2. Group "B" species 3. Angle of load to grain = 90°

4. Over 3" thick both faces

Allowable load on 4" split ring connector and 3/4" bolt = 3,380 x.4 = 13,440 lbs.

Number of bolts required = $\frac{V}{\text{Allowable}} = \frac{42,000}{13,440} = 3.13 \text{ Bolts}$

Use 4 bolts, two on each side.

CURB TO FLOOR BOLTS:

Check bolts in tension, use ASTM A 325 Bolts.

72,000 fbs. x 20.38 in. = 244,560 pounds to be resisted by bolts 6 m.

Tensile Stress Area for 3/4" diameter bolt = 0.334 sq. in. Allowable load for 3/4" diameter bolt = 120,000 x 0.334 = 40,080 lbs. per bolt

TYPICAL CROSS SECTION OF CURB AND RAIL

CHECK WITHDRAWAL FORCES IN DECK:

Compute withdrawal resistance of 3/4" x 30" Drive Spikes:

P. = Ultimate withdrawal resistance WOOD Handbook, page 7-6

 $P_w = 8,600 \times G^2 \times D \times L$ Where G = Specific gravity = .49, D =, Diameter = .75"

Pw= 6,600 x .49² x .75 x 1 = 1,188 lbs.An. Ultimate Value.

Pw= 1,188 x (8 + 17 + 17) = 47,520 pounds > 42,000 pounds OK

Compute withdrawal resistance of 3/8" x 15" Deck Dowets

 $P_w = Uttimate withdrawal resistance. WOOD Handbook, page 7-6:$ $<math>P_w = 6,600 \times G^2 \times D$. Where G = Specific gravity = .49 , D =, Diameter = .375" $R_w = 6,600 \times .49^2 \times .375 \times 1:0 = 594$ lbs./m. UttimateValue.

TYPICAL CROSS SECTION OF CURB AND RAIL.

DECK THICKNESS IN	TOTAL MOMENT TO BE RESISTED ([+28.63)P in-be	RESISTING FROM DOWELS (E * P) 12x 4,158 n-ba	MOMENT. FROM DRIVE SPIKES \$ [(7/2) x 40 x 1, 188] n-bs.	TOTAL RESISTING MOMET in-ba
10"	2,761,380	498,960	712,800	1,211,760
12"	2,925,360	598,752	855,350	1,454,112
14"	3,069,3 6 0	698,544	997 ,920	1,696,464
16"	3,213,360	798,338	1,140,480	1,938,816
16"	3,357,360	898,128	1,283,040	2,161,168

TABLE NO. 2 (DECK RESISTANCE TO BENDING MOMENT):

CROSS SECTION AT RAIL POST

NOTE: All timber to be Douglas Fir. The stress grade as follows: Rail Posts - Post and Timber, Dense Select Structural

\$7.5

APPENDIX C: SUMMARY OF RESULTS, TEST WB-1

Beam Member . . 6" x 10-3/4" laminated wood Length - ft [m] 18.0 [5.5] Maximum Deflections - in. [cm] Permanent 1.5 [3.8] Dynamic 6.3 [16.0] Post Details of the posts, blockouts, curb, and deck are included in Figure 1. Vehicle 1982 V. W. Rabbit Mass - 1b [kg] Dummy 165 [75] Gross Test Weight 1983 [900] Angle - degrees Impact 20 Occupant Impact Velocity - fps [m/s] Forward (accel) -10.6 [-3.2] Lateral (accel) -18.6 [-5.7] Occupant Ridedown Accelerations - g's Maximum 50 msec Avg Accelerations - g's Vehicle Damage TAD 01-FR-4 01FREE6 VDI

Barrier Installation

The barrier evaluated in the test was a Glulam Prefabricated Bridge section. The barrier system consists of 18-ft (5.49 m) long by 7-ft (2.1 m) wide laminated wood bridge deck panels. The thickness of the deck panels used in this test was 10 in. (25.4 cm). For this test, 4 panels were used to construct a simulated bridge 72 ft (21.9 cm) in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck according to the manufacturer's instructions. Figure 25 presents details supplied by the manufacturer of the system.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the small car with the bridge rail and curb. Goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket, (2) the vehicle should remain upright throughout the event, and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1982 Volkswagen Rabbit. Gross test weight, including the dummy and instrumentation was 1983-1b (900-kg).

Performance

10.00

Impact conditions were 59.2 m/h (95.3 km/h) and a 20-degree impact angle. As shown in figure 26, the vehicle impacted the barrier 29 in. (73.7 cm) downstream of Post 5. The vehicle remained in contact with the barrier for 12.5-ft [3.8-m] before redirection at a -12.0 degree angle. During the impact sequence the right front tire/wheel became engaged between the top of the curb and the bottom of the rail (see figure 27). Measurements of the tire/wheel path indicated a maximum of 5 in. (13 cm) of lateral engagement. Since the curb is 12 inches (30.4 cm) wide, there was no propensity for the wheel to snag on a post during impact. No significant pitch, roll, or yaw was noted during impact and redirection. The vehicle came to rest 140 ft (43 m)

downstream of the impact point and 50 ft (15 m) out from the barrier plane. The vehicle brakes were applied at approximately 100 ft (30 m) after impact. Table 12 presents after impact vehicle trajectory. Maximum dynamic barrier deflection observed from the overhead data camera was 6.3 in (16.0 cm). Measurements of the barrier after the test, tabulated in table 13, showed a maximum of 1.5 in (3.8 cm) permanent deflection.

Maximum 50 m/s average accelerations from transducer data indicated 50 m/s averages of -5.0 g's (longitudinal) and 7.6 g's (lateral). Figure 28 presents a summary of test results. Vehicle kinetics from onboard transducers is tabulated in Table 14. Plots of vehicle accelerations are presented in Figure 29. Table 15 presents occupant risk data derived from the on-board transducers.

Barrier Damage

Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of post 3 to post 9 with a maximum separation of 0.5 in (1.3 cm) on the top surface of the deck about 3 ft (0.9 m) downstream from post 6. Maximum separation observed on the bottom surface of the deck was 0.1-in (0.3 cm). Several drive spikes in the impact affected area of the deck showed evidence of minor "pullout."

Vehicle Damage

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The windshield was cracked from A-pillar deformation. Both right side tires were blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 16.

Figure 25. Barrier construction details, test WB-1.

Figure 26. Sequential photographs during impact, test WB-1.

the set

2.2

Figure 27. Sequential photographs as viewed from behind the rail, test WB-1.

•.

N. A

Test No							
Test Date .							x. 21, 1968
Installation Beam	n Length	i - ft	(m) .	• • •	• • • • •	• • • • • •	. 72 (22)
Hender	• • • •		6-in (1	5.2 cm)	x10-3/4-	in (27.3) la	nineted wood
Longth	- ft U	N.	• • • •		• • • • •		18.0 (5.5)
Haximus Def	lection	s - in	. (cm)				
Perman	ent .						1.5 (3.8)
Post							••••••
Detali	s of th	e post	s, blo	ckouts,	curb, end	deck ere in	cluded in
figure 1.							
Vehicle Mess - lb (••••				• • • •	1982	V.V. Rebbit
	1101.010	•••	• • •	• • • •	• • • •		1818 (825)
Summy		• • •	• • •	• • • •	• • • •		. 165 (75)
Groes	Test He	ight .	• • •				. 1983 (900)
Speed - ml/	'h (lun/h	1	• • •				59.2 (95.3)

vuâre - ceâu							
Impect						 	20
Occupant Imp	ect Veloc	ity -	ft/s	(m/s)			
Forward	(accel)					 10.6	[-3.2]
Lateral	(accel)	• •		• • •		 18.6	[-5.7]
Occupent Ric	ledown Aci	elera	itione	- g1e			
Forward	(accel)					 	0.7
Lateral	(accel)	• •		• • •		 	. 7.6
Maximum 50 m	vs Avg A	celer	etion	w - g*	6		
Longitu	dinel (a	(Jeca				 	5.0
Lateral	(accel)	• •			• • •	 	. 8.5
Vehicle Dem	-						
TAD .						 	01-FR-4
							01FREE6
		• • •	•••			 	********

Figure 28. Summary of results, test WB-1.

.

Annia - d

Figure 29. Vehicle acceleration plots, test WB-1.

Location ¹	<u>Distance</u> ²
0	0
10	-0.2
20 30	1.5
40	3.3 5.2
50	9.0
60	10.5
70	12.8
80	16.1
90	19.8
100	24.5
¹ Distance measured in the dow of impact.	nstream direction with O as the point
² Measured perpendicular to th the impact side of the vehicl	e barrier plane at the front tire on e

Table 13. Permanent ba	arrier deflections, test WB-1.	
Post/Location	Deflection	
3 4 5 6 7 8 9 10 11	0.3 0.4 0.5 0.8 1.5 1.3 0.8 0.4 0.2	
Note: All dimensions a	are in inches. 1 ft = 2.54 m	

12-13

	10 ·····		- 63				
	LE CLASS						
	T SPEED -		83 FPS				
	LE KINETI VALUES A			S AT TITE			
TIME				S. VELOC	ITY(FPS)		P.(F)
(S)	LONG.	LAT.	0E6	LONG.		X	Y
. 000	30	88				.00	.00
. 010	97	1.14		86.85		.82	.30
. 020	-3.04	19				1.63	. 59
. 030	-4.71	11.21				2.44	. 88
.040		-6.51					1.15
. 050		11.16			4.52		1.41
. 060		10.11	19.69				1.64
.070	-8.51	8.36	19.28	79.92	8.98	5.64	1.83
.080		10.24		78.59	11.25		1.99
. 090		5.23	17.84				2.12
. 100	-1.59	4.31	16.65	77.32	13.29	7.97	2.23
. 110	1.72	9.46	15.17	76.71	13.63	8.75	5.31
. 120	1.72 -4.60	5.69	13.19		12.84		2.37
. 130	-2.81		10. 90	76.32	12.09		2.41
. 140	-5.22	. 45	9.16	75.67			2.42
. 150	5.16 3.24	8.04	7.54			11.82	2.43
. 160	3.24	1.32	5.45	75.10	8.65	12.57	2.42
. 170	1.27 -1.87	6.34	3.51	74,90	7. 92 6.24	13.33	2.39
. 190			1.69	73.26	6.24		2.36
. 190	4.26		07	73.82	4.87 3.24	14.81	2.31
. 200	30	. 68	-1.61			15.55	
.210	-1.08	3.67	-3.00			16.30	
. 220	30	74	-4.32			17.04	
. 230	. 20	-1.02	-5.54	-	-1.41	17.78	
. 240	52	19	-6.54		-3.07 -4.23	18.52	
. 250	-3.04		-7.49		-	19.26 20.00	1.92
. 260 . 270	-1.53 -1.20	97 24	-8.39 -9.30		-6.96	20.74	1.87
.280	1.95	.27	-10.28	73.83	-9.08	21.48	1.82
. 290	-3.09	-1.38	-11.15		-9.21		1.76
. 300	.43		-12.01	74.02	-10 57	22.97	1.71
. 300	-1.97	-2.80	-12.78		-11.49	23.71	1.66
. 320			-12.78		-12.77	24.46	1.61
. 330	. 60		-14.48		-13.90	25.20	1.56
.340	1.27	-1.24	-15.31	73.41	-15.41	25.95	1.52
. 350	3.13	.91	-15.31	73.23	-16.45	26.70	1.47
				73.13	-17.17	27.45	1.43
. 360	3.62	1.51	-16.97		-18.82	28.20	1.39
.370	3.41	-1.66	-17.83	72.73 72.77	-19.81	28.95	1.34
. 380 . 390	2.68	.50 15	-18.65 -19.51		-21.13	29.70	1.29
- · ·	.71		-20.38	71.97		30.45	1.25
. 400	. 93	15 65	-21.19	71.69		31.21	1.21
. 410	02		-21.15	71.52		31.96	1.17
. 420 . 430	08 .09		-22.74	71.33		32.72	1.13
-		-1.15		70.99		33.47	1.09
. 440 . 450	-1.70		-24.30		-27.62		1.05
HIGHES	T 50.0-MS	AVB. A	TIME (S	SEC)			
	6'		TART	END			
LONG.	-5.0		.041	.091			
		-					

\$2.5

		we-1				est WB-1	
TEST D	ATE	09-51	- 88				
UCHTCH I	F (1) 655	- PONI					
IMPACT	SPEED	96.	63 FP5				
OCCUPA	NT RISK	SUMMARY	o-ms ave	RAGE ACC	ELERATIO	NS	
NUTE	143 (Part 1					UPANT	
	(VEHICLE	ANG.VEL	VEL	(FPS)	OISP	
TIME (S)	LONG.	LAT.	(RAC/S)	LONG		LONG.	LAT.
	30	. 89	07	.00	.00 07 51	.00	.00
. 000	-,30	.57	02	.05	07	.00	.00
. 010 . 020	-1 16	.91	02	.03	51	. 00	.00 01 03
.030	-2.15	6.04	. 02	. 79	-1.28	. VI	
.040	-2.81	2.63	. 13 32	1.85	-2.96	.02	06
050	-4.79	.91 6.04 2.63 7.38 9.61	32		-4.41	.05 .09	- 12
.060	-6.32	9.61	34	5.46	-6.99	.14	20
.070	.5 45	9.00	99	5.76	-8.90 -11.83		31
080	-2.81	7.96	-1.28	6.71	-11.03	.27	44
.090	-3.30	8.34					59
100	-3.50	6.90	-2.39	6.46			•.77
. 110		2 00	-2,72	6. 49 4.54	-18.12*	. 41	96*
. 120	-1.30	6.34#	-4,39	4,90	-21.81	. 41	-1.18
		3.00			-24.58		-1.43
. 140	-4.37	2.70	-2.47		-25.34	. 45	-1.69
• • •		5.28	-3.55		<u> </u>	. 43	-1.96
. 160			-3.32	4.27		. 41	·2.25
	-2.47	5.06 2. 2 6	.2.94	4.96	-30.19	. 38	·2.56
	-4.13	1.52	-2,83	4.25			-2.89
. 190		1.52			- 32. 37		-3.21
. 200	. 98 70	94	-2.46			.24	-3.54
.210	.24	26	-2.29	2.22	-33.49	. 18	-3.89
. 220	. 24		-1.90	1.65	- 33, 93	. 11	-4,22
. 230	15	22	-1.67	1.25	- 33.90		-4, 56 -4, 9 0
.240 .250			-1.59	1.07	-34.12	02	-5.24
.250	.05		-1,60		-33.88	09 17	-5,50
.270	, 96	67	-1.68	17	-33.69	28	-5.91
.280	.54	34	-1.37	-1.02	-34.22		-6.25
.290	43	- 41	-1.49	-1.67	-34.08		-6.58
. 300	1.24	31	-1.47	-2.20	-33.86		-6.91
. 310	. 79	03	-1.33	-2,73	-34.09		-7.24
. 320	. 17	33	-1.50	-3.43	-JJ,84		-7.67
, 330	01	- , 92	-1.34	-3.59	-33.15		.7.89
. 340	. 13	- , 70	-1.50	-4.39		-1.20	-8.20
. 350	. 63		-1.45	-4.90	- 33,47	-1.37	
. 360	03		-1.47	-5.57	-33.45	-1.3/	
. 370		-1 16	-1.54	-6.05	- 32, 75	-1.75	.9,13
. 380	. 66	. 18	-1,44	-6.75	- 32.00	-1.96	-9.43
. 390	49		-1.51	-7.32	- 32.4/	-2.18	.9.72
. 400	. 11	17	-1.44	-7.61	- 32,33	-2.40	- 10,01
. 410	. 12			-8.06		.2 62	-10.30
. 420	. 41	• . 43	• 1 . 39	· U. UD	-31 47	-2.25	-10.50
. 430	.\$7	.47	*1.34	-7.23	- 24 - 27	-2.85	-10.86
. 440	25	•.77	-1.30	-10.09	-31.59	-3.34	-11.14
. 450	- , 43	07	-1.33	-10.03	<i></i>		
occup.	RISK FA	CTORS			TDE (\$)	VELOCITY (FPS)	
LONS	VEL.	AFTER 2. AFTER 1.	0 FT. DJ 0 FT. DJ	ISP	. 460 . 122	- 10. 56 - 1 8.6 0	
		TER OCCU		ACT	TIME (\$)	ACC. (95)
				-	. 460	69	
>LONG.	ACCEL	ERATION		••	. 124	7.62	
		ERATION					

æ,

	Before Test	After Test	Crush
L	52	52	Not Applicable
C-1	2.0	2.0	0.0
C-2	0.0	5.6	5.6
C-3	0.0	6.0	6.0
C-4	0.0	7.5	7.5
C-5	3.0	10.0	7.0
C-6	4.0	12.1	8.1
ehicle co	rush of 12.0 at a enterline. 1 dimensions are in		

APPENDIX D: SUMMARY OF RESULTS, TEST WB-2

Test Date Sept. 27, 1988 Installation Length - ft [m] 72 [22] Beam Member . . . 6" x 10-3/4" laminated wood Length - ft [m] 18.0 [5.5] Maximum Deflections - in. [cm] Permanent 2.3 [5.8] Dynamic 8.5 [21.6] Post Details of the posts, blockouts, curb, and deck are included in Figure 1. Vehicle 1984 Ford F150 Pickup Mass - 1b [kg] Gross Test Weight 5419 [2458] Speed - mph [km/h] 47.5 [76.4] Angle - degrees Occupant Impact Velocity - fps [m/s] Forward (accel) 8.1 [2.5] Occupant Ridedown Accelerations - g's Lateral (accel) 6.9 Maximum 50 msec Avg Accelerations - g's Vehicle Damage TAD 01-FR-4 VDI 01FREE6

Barrier Installation

The barrier evaluated in the test was a Glulam Prefabricated Bridge section. The barrier system consists of 18-ft (5.49 m) long by 7-ft (2.1 m) wide laminated wood bridge deck panels. The thickness of the deck panels used in this test was 10 in. (25.4 cm). For this test, four panels were used to construct a simulated bridge 72 ft (21.9 cm) in length. The panels were positioned and fastened to an existing reinforced concrete deck at the test site. The curb/scuppers, posts, and rail were attached to the deck according to the manufacturer's instructions. Figure 30 presents details of the system supplied by the manufacturer. The barrier was the same as that used in test WB-1. One deck panel with curb/rail was replaced in the impact area to ensure system integretry.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system, (2) the vehicle should remain upright throughout the event, and (3) the vehicle aftertrajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1984 Ford F150 Pickup. Gross test weight, including the dummy and instrumentation was 5419-1b (2458 kg).

Performance

593

Impact conditions were 47.5 m/h (76.4 km/h) and a 20-degree impact angle. As shown in figure 31, the vehicle impacted the barrier midway between Post 5 and 6. The vehicle remained in contact with the barrier for 15.0-ft [4.6 m] before redirection at a -4.9 degree angle. The vehicle showed no tendancy to snag on the curb or posts during the impact sequence. No significant pitch, roll, or yaw was noted during impact and redirection. The vehicle came to rest 130 ft [40 m] downstream of the impact point and 48 feet [15 m] out from the barrier plane. The vehicle brakes were applied at approximately 100 feet [30 m] after impact. Table 17 presents after impact vehicle trajectory. Maximum dynamic barrier deflection observed from the overhead data camera was 8.5 inches [21.6 cm]. Measurements of the barrier after the test, tabulated in table 18, showed a maximum of 2.3-inches [5.8 cm] permanent deflection.

Maximum 50 m/s average accelerations from transducer data indicated 50 m/s averages of -3.2 g's (longitudinal) and 5.2 g's (lateral). Figure 33 presents a summary of test results. Vehicle kinetics from onboard transducers is tabulated in table 19. Plots of vehicle accelerations are presented in figure 34. Table 20 presents occupant risk data derived from the on-board transducers.

Barrier Damage

Damage to the barrier consisted of scuff marks and minor gouging on the rail and curb. Inspection of the barrier system revealed no fractured posts or beam members. Observation of the deck showed delamination between the second and third deck timbers in the impact area. The delamination of the deck occurred from the location of Post 3 to Post 9 with a maximum separation of 0.8 in. [2.0 cm] on the top surface of the deck about 3 ft [0.9 m] downstream from Post 6. Maximum separation observed on the bottom surface of the deck was 0.1 in. [0.3 cm]. Several drive spikes in the impact affected area of the deck showed evidence of minor "pullout."

Vehicle Damage

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The windshield remained intact. The right front tire was blown out during impact. (Note: The tire remained on the wheel during redirection but became detached during subsequent vehicle retreivial from the run-out path.) Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 21.

Figure 30. Barrier construction details, test WB-2.

Figure 31. Sequential photographs during impact, test WB-2 (overhead view).

<u>199</u>.

->-

Figure 32. Sequential photographs, test WB-2 (view from downstream).

Table 17. After impact v	vehicle trajectory, test WB-2.
Location'	Distance ²
0 10 20 30 40 50 60 70 80 90 100	0 -0.1 0.2 1.5 2.0 3.4 1.4 0.0 -3.0 -6.1 -11.2
'Distance measured in the downs of impact.	tream direction with O as the point
² Measured perpendicular to the l the impact side of the vehicle.	Darrier plane at the front tire on
Note: All dimensions are in fe	et. 1 ft = 0.305 m

Table	e 18. Permanent barrier deflect	tions, test WB-2.
P	Post/Location	Deflection
	3 4 5 6 7 8 9 10 11	0.5 0.8 1.0 1.5 2.3 2.3 1.5 1.0 0.5
Note:	All dimensions are in inches	. 1 in = 2.54 cm

Test	No	• •			•	•		•	•	•	•			•		•				•						W8-2	2
Test	Dete .	• •	• •			•																ŝe	ot	. 2	7.	1968	1
inst Been	alletier	h Len	eth	•	ft	Û	đ		•	•	•	•	•	•	•	•	•	•	•	•	•	•••			ń	[22]	
	Heaber	• •	6-	-tn		15.	.2	a)	x	1	0-	3/	4	- 1	n	(2	7.	3		•	t na	.in	inte	d i	hoou	
	Length																										
Hex	imum Def	lect	one	•	in).	(0	m)																			
	Perman	ent	• •	•			•	•		•														2.	3	[5.8)
	Dynami																										
Pee													-	•	-	-	-	-	•	•	-	-	-				-
	Detail	s of	the	p	DE 1	ts,	t	N	ci	(01	<i>i</i> ti	١,	CI	url	ь,		nd	de	I Cİ	c .		• •	nc	lude	ы	in	
	figure	11.																									
Veh	icle	••	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•		19	264		or	d I	F 150)	licku	P
Nee	e - lb (ikaj																									
	Test I	nert	ie .											_									,	5254		(2383	n
	Dummy																										
Sec	ed - mi/	6 D	=/h1			•	•	٠	•	•	٠	•	•	٠	•	٩	•	•	•	٠	٠	•		2415	7 E	***	1
				•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	٠	٠	•		۹/.:	>	110.4	

. 148-2	Angle - degrees
7, 1968	Impact
72 (22)	Exit
d wood	Occupent Impact Velocity - ft/s (m/s)
0 (5.5)	Forward (accel)
	Lateral (accel)
3 (5.8)	Occupant Ridedown Accelerations - g's
[21.6]	Forward (accel)
	Lateral (accel)
ed in	
	Maximum 50 m/s Avg Accelerations - g's
	Longitudinal (accel)
) Pickup	Lateral (accel)
	Vehicle Damage
(2383)	TAD
165 (75)	VOI
9 (2458)	

Figure 33. Summary of results, test WB-2.

Table 19. Vehicle kinetics data, test WB-2.

TEST ID ----- WB-2 TEST DATE ---- 09-27-88 VEHICLE CLASS - OTHER IMPACT SPEED -- 69.67 FPS

VEHICLE KINETICS SUMMARY ... NOTE: VALUES ARE INSTANTANEOUS AT TIME

TIME	ACCE	L.(G'S)	HEAD. ANG	. VELOCI	TTY (FPS)	OIS	5P.(F)
(S)	LONG.	LAT.	DEG	LONG.	LAT.	x	Y
.000	73		20.00	69.67	.00	. 00	.00
.000	01		19.96	69.45	08	.65	
.020	62		19.90	69.31	17		
.030	17	08	19.84	69.23	26	1.96	.71
. 040	. 39	. 43	19.78	69.27	22	2.61	
.050	.05	.43 .57	19.76	69.40	09	3.26	1.19
.060	17		19.74	69.31	08	3.91	1.42
.070	68		19.72	69.30		4.56	
.080	-2.24		19.71	68.74			1.89
. 090	.50		19.74	68.12	1.23		2.11
. 100	.05		19.87	67.75	1.66	6.50	2.32
. 110	1.57		19.92 19.85	67.18 66.64	1.04	7.14 7.78	2.54
. 120 . 130	01	5.08 4.16	19.85	65.63	1.62	8.41	2.76 2.97
. 140	1.40	03	18.99	64.69	1.75	9.03	3.17
. 150	-11.20	.84	18.48	63.83	1.87		3.36
. 160	1.29	5.40		63.72	2.91	10.26	3.53
. 170	-5.21	7.20	17.22	62.99		10.88	3.69
. 180	62	6.23		62.28	5.18	11.49	3.83
. 190	-4.59	2.73	15.61	61.18	5.66	12.10	3.95
. 200	12	2.82	14.65	60.24	6.02	12.70	4.05
.210	-3.25	5.13	13.55	59.46	6.32	13.30	4.14
. 220	-4.54	3.93	12.38	58.36		13.88	
. 230	68	. 11	11.12	57.68	5.99	14.47	
.240	68	2.59	9.74	57.71	5.70	15.05	4.32
.250	-2.47	-4.92	8.27	57.80	4.89	15.62	4.35
. 260	3.43	-2.91	6.87	57.52 57.38	4.86	16.20	4.38
.270 .280	.05	12.31 1.17	5.37 3.92	57.23	4.90 4.24	16.78 17.35	4.39 4.39
.290	-2.02	49	2.67	57.12	3.25	17.93	4.39
. 300	62	-13.47	1.52	56.12	1.11	18.49	4.38
.310	-4.03	-1.40	. 44	55.61	98	19.05	4.39
. 320	1.52	7.24	66	56.01	-2.03	19.61	4,41
. 330	-1.46	8.99	-1.86	55.92	-1.98	20.17	4.42
. 340	90	5.68	-2.82	56.38	98	20.73	4.41
. 350	2.42	. 75	-3.34	56.37	24	21.30	4.38
. 360	-4.82	1.67	-3.72	55.82	1.01	21.85	4.34
. 370	2.81	2.45	-4.00	55.37	1.82	22.41	4.29
. 380	1.12	1.90	-4.16	55.95	2.00	22.96	4.23
. 390	-1.96	12	-4.38	55.69	2.35	23.52	4.17
. 400	-2.52	81	-4.66	55.27	2.19 2.14	24.07 24.61	4.10 4.03
. 410 . 420	73 1.97	63 1.76	-4.94 -5.05	54.94 55.08	2.26	25.16	3.96
. 420	73	.90	-5.10	55.06	2.33	25.71	3.89
. 440	17	12	-5.04	54.93	2.49	26.25	3.82
. 450	1.12		-4.98	55.13	2.29	26.80	3.75
. 460	1.01	81	-4.90			27.35	3.68
. 470	-1.63	-1.13	-4.92	55.19	1.84	27.35 27.90	3.61
HIGHES1	r 50.0-M	5 AVG. AC	CEL.				
			TIME (S				
	G'	•	ART	ENO			
1.04.00				.230			
LONG. LAT.	-3.2 5.2			.230			
LH1.	3.6		196				
				ويبري المنطبين المصرية فالمعرف المعادية			

104

ر-مار

25

62.5

	Table	20.	Occupan	t risk	c data,	test WB-	-2.
TECT	ID	LB.2	2				
	DATE						
VEHIC	LE CLASS	5 - OTHE	R				
	T SPEED						
	ANT RISK			RAGE A	CELERATI	ONS	
TIME	ACCEL	(G'S)	e) ANG.VEL	UEL.	(FPS)	CUPANT DISF), (F)
						LDNG. .00 .00 .01 .02 .02 .02 .02 .02 .02 .02 .02 .03 .05 .07 .09 .12 .15 .25 .29 .34 .38 .43 .48 .53 .58 .52 .65	
. 000	73	.47	08	.00	.00	.00	.00
.010	52	*.17	06	. 25	.04	.00	
. 020	38	02	10	ۍ کې . د د د	.04		
.030	04	.1/	09	. 4C	.05	.01	
.040	.24	. 30	- 16	0	02	.01	.00
.060.	- 10	12	- 03	. JC ДЛ	- 30	.02	.00
.060	- 75	- 14	03	, 444 AG	- 20	.02	.00
.070	02	. 50	02	1 02	20	.02	01
.080.	-2.30	2.70	03	1 02	77	.03	02
.090	- 2.03	.07	. 13	2.23	-1.3/	.03	04
. 100	/3	.2 42	• • • •	2,33	-1 07	.07	-,05
130	-2.76	2 45	- 40	2.00	-1 00	. 12	06
120	-2.14	2.40	- 40	2 04	-2 64	. 15	-,08
1.40	-2.02	2 24	- 00	7 69	-7 67	. 17	-, 12
	-2.0/	2,00	. 97	4 22	-4 20	.21	- 16
160	-2	<u>⊿</u> Q4	-1.24	7.03	-6.29	. 25	22
170	-2.00	6 75	-1.05	4.99	-7.97	.29	- , 29
190	- 2 . EE	5.33	-1.39	5.10	-10 47	.34	39
.190	+3.74	4.00	-1.59	5.79	-12.13	. 38	51
200	-2.71	4.00	-1.21	6 24	-13 83	. 43	-,64
210	-4 04	4 20	-1.94	6.64	-15 54	. 48	80
.220	-1.00	3.23	-2.12	7.27	-16.96*	.53	97*
220	-1.74	2.07	-2.32	7.42	-19.45	. SA	-1.16
230	-2 54	5.27	-2 49	6.93	-16.96* -18.45 -19.95 -20.77	. 52	-1.37
250	.69	95	-2.34	6 66	-19.95 -20.77 -22.62 -24.42	.65	-1.59
260	-1.00	3,22*	-2,61	6.13	-22.62	.67	-1.83
.270	- 39	6,49	-2.61	5.83	-24.42	.68	-2.08
.280	-1.76	. 85	-2.31	6.01	-25.25	. 68	-2.35
.290	-1.69	82	-2.07	6.08	-24,42 -25,25 -25,54	. 69	-2.62
. 300	-3.23	-4.28	-1.99	6.79	-25.54 -24.67 -23.66 -24.03	, 70	-2.98
	1.95	-2.58	-1.77	7.23	-23.66	, 71	-3.14
	-1.41	2.62	-1.99	6.01	-24.03	.71	-3.39
. 330	1.75	6.01	-2.05	5.46	-24.03 -25.51 -26.92	. 69	-3.65
340	.15	5.12	-2.05 -1:18	6.01	-26.92	.69	-3.93
350	-1.08	3.70	39	7.10	-27.65	.71	-4.21
1350	-1.63	4.54	39 82	6.75	-29.65	.75	-4.50
. 370	1.42	1.92	28	7.97	-30.37	.81	-4.80
	09	.91			- 30. 73	.37	-5.11
	-1.36				-31.42	. 92	-5.43
	-1.40	.58	63		-31.73		-5.75
	21	. 46			-31.82		-6.07
. 420	.82	.90			-31.86	1.08	
	84	.31			-31.73	1.16	
		22			-31.94		
. 460	. 40	-1.22			-31.62	1.34	
. 460		-1.22			-31.30	1.43	
470			09		-31.28		
DCCUP. I	RISK FAC	TORS				VELOCITY (FPS)	
)LONG.)LAT.	VEL. A	FTER 2.(D FT. DIS D FT. DIS	P P	. 480 . 221	8.11 -17.18	
1AX. ACC	EL. AFT	er occuf	PANT 111PA			ACC. (85)	
>LONG.	ACCELE	RATION		••	. 480	-1.74	

	Before Test	After Test	Crush
L	58	58	Not Applicable
C-1	0.4	0.3	-0.1
C-2	0.8	3.3	+2.5
C-3	0.0	2.5	+2.5
C - 4	0.0	4.0	+4.0
C-5	0.0	7.1	+7.1
C-6	1.5	11.5	+10.0
Maximum c centerlin		location of 25 to	the right of vehicle

ianta

APPENDIX E: SUMMARY OF RESULTS, TEST KM-1

Test No
Beam Member 9-by 10-in [25.4 cm by 22.8 cm] reinforced concrete Length - ft [m]2@24(7.3) and
Maximum Deflections - in. [cm] Permanent none Dynamic none
Post Details of the posts, blockouts, curb, and deck are included in figure 35.
Vehicle 1982 Honda Civic
Mass - 1b [kg] Test Inertia
Speed - mph [km/h] 51.0 [82.0]
Angle - degrees Impact
Occupant Impact Velocity - ft/s [m/s] Forward (accel) 10.6 [3.2]/9.2 [2.8] Lateral (accel) -15.6 [-4.8]/-16.7 [-5.1]
Occupant Ridedown Accelerations - g's Forward (accel)
Maximum 50 msec Avg Accelerations - g's Longitudinal (accel)2.8/-5.4 Lateral (accel) 4.0/8.1
Vehicle Damage TAD 01-FR-4 VDI 01FREE6

۰.

TEST KM-1

Barrier Installation

The barrier evaluated in the test was a Modified Kansas Corral bridge rail. The barrier system, which consisted of concrete posts, rails and a 6-in (15-cm) curb, was constructed on a simulated bridge deck. Total system length was 69 ft (21 m). Figure 35 presents details of the system tested.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the small car with the bridge rail and curb. Goals for this test were: (1) the vehicle should be smoothly redirected without exhibiting any tendency to snag or pocket, (2) the vehicle should remain upright throughout the event, and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1982 Honda Civic. Gross test weight, including the dummy and instrumentation was 1990 lb (902 kg).

Performance

Impact conditions were 51.0 m/h (82.0 km/h) and a 20.5-degree impact angle. As shown in figures 36 and 37, the vehicle impacted the barrier midway between posts 7 and 8. The vehicle remained in contact with the barrier for 13.8 ft (4.2 m) before redirection at a -3.7 degree angle. During the impact sequence the right front tire/wheel became engaged between the top of the curb and the bottom of the rail and the wheel hub contacted post 8. Although post 8 exhibited minor gouging, observation of the test film showed no significant snag potential. The vehicle remained stable during impact and redirection. The vehicle came to rest 150 ft [46 m] downstream of the impact point and 10.5 ft [3.2 m] out from the barrier plane. The vehicle brakes were not applied after impact. Table 22 presents after impact vehicle trajectory. The barrier did not deflect during impact.

Film data indicated maximum 50 m/s averages of -2.8 g's (longitudinal) and 4.0 g's (lateral). Maximum 50 m/s average accelerations from transducer data indicated -5.4 g's (longitudinal) and 8.1 g's (lateral). Figure 38 presents a summary of test results. Vehicle kinetics from film and onboard transducers are tabulated in tables 23 and 24. Figure 38 contains photographs of vehicle and barrier damage. Plots of vehicle accelerations are presented in figure 39. Tables 25 and 26 present occupant risk data derived from film and the on-board transducers.

Barrier Damage

Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging was noted on post 8. Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered as undamaged.

Vehicle Damage

90A

Damage to the vehicle consisted of sheet metal deformation of the hood, right front fender, side, and rear fender. The right front tire was blown out during impact and the A-frame was displaced rearward to the fender well. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 27.

Test No				•	• •	• •	•	٠	•	• •	•		•	•	•		•	•	• •	NH- 1
Test Date	• •				• •									•	•		No	Ν,	18,	1968
Installation Long	th ·	• •	t (im)														•	- 69	[21]
lean																				
Hember	9)-1(n (22	8,	C)X	10	- 10	n (25	.4	cm)	rel	inf	orc	ed	con	crete
Longth - ft	(m)	٠	•	•	•	• •	•	•	•	2	8	24	(7.	3)	en	d 1		16	(4.9)
Neximum Deflectio	ne -	• •	n.	[¢	n)															
Permanent .										•							•			none
Dynamic	•									•										none
Post																				
Details of t figure 14.	the i	poe	te	, t	olo	cka	out	۰,	cı	гЪ	, •	nd	de	ic l		re	in	clu	ded	in
Vehicle	•		•	•	•	•		•	•	•	• •		•	•	•	15	82	Ho	nde	Civic
	•	• •	• •	•	•	•	•••	•	•	•	• •	• •	•	•	•	19	82	Ha	nde	Civic
Vehicle				-	-	-			-	-			•	-	-					
Vuhicle	• •	•		•		•	• •		•	•	• •			•	•	•		1	825	(827)
Vehicle	••	•	•••	•	•	•	• •	•••	•	•	•	•••	•	•	•	•	•••	1	825 16	(827) 5 (75)

Angle - degrees Impact
Occupent Impact Velocity - ft/s [m/s] Forward (film/accel)
Occupant Ridadown Accelerations - g's Forward (accel)
Naximum 50 m/s Avg Accelerations - g's Longitudinal (accel)
Vehicle Damage TAD

Figure 35. Summary of results, test KM-1.

×3

Figure 36. Sequential photographs during impact, test KM-1 (overhead view).

Seco

2957

-

Figure 37. Sequential photographs, test KM-1 (view from downstream).

est No		• •	•		•	•	• •		•			•				•	101-1
leet Dete		• •			•	•		•	•	•				No	٧,	18,	1968
Installation Longth	- ft	(m)	•	•••	•	•	•••	•	٠	•	• •	•	•	٠	•	69	(21)
Heaber	9-in	(22.	8 a	n)x	10)- (1	n (25.	4	-	۰ ۱		nfc	ec.	ed.	~~~	rrete
Longth - ft (m))	• • •	•••	• •	•	•	Ż	8	24	(7.3))	enc	1 1	8	16	(4.9)
Neximum Deflections	- In.	. ta	1														
Permanent			-														0000
Dynamic						•	•••	•	•	•	• •	•••	•	•	• •	••	0000
Post	•••		•••	• •	•	•	•••	•	•	•	•	• •	•	•	• •	•	
			ا مم ا	iouri		cu	rb.		hd	de	ck					اسماد	1-
Details of the figure 14.	peri	, p										-		1116			10
Details of the figure 14. Vehicle																	
figure 14. Vehicle																	
figure 14. Vehicle Nees - lb (kg)	•••	•••	• •	•	•••	•	• •	•	•	•	•	•	19	82	Hor	vde	Civic
figure 14. Vehicle Nees - lb (kg) Test inertie .	•••	•••	•••	•	•••	•	• •	•••	•	•	•	•	19	82	Hor 1(ndia 825	Civic [827]
figure 14. Vehicle Hees - Lb [kg] Test Inertia . Dummy	•••	•••	•••	•	•••	•	•	•••	•	•	•	•	19 	82	Hor 1	nde 825 16!	Civic (827) 5 (75)
figure 14. Vehicle Nees - lb (kg) Test inertie .	 	•••	•••	•	•••	•	•	•••	•	•	•	•	19 		Hor 11	ndia 825 16! 990	Civio [827] 5 [75] [902]

Angle - degrees Impect
Occupent Impect Velocity - ft/s [m/s]
Forward (film/accel) 10.6 [3.2]/9.2 [2.8]
Lateral (film/accel)15.6 [-4.8]/-16.7 [-5.1]
Occupant Ridedown Accelerations - g's
forward (accel)
Lateral (accel)
Neximum 50 m/s Avg Accelerations - gts
Longitudinel (accel)
Lateral (accel)
Vehicle Damage
TAD
VDI

Figure 38. Summary of results, test KM-1.

Figure 39. Vehicle acceleration plots, test KM-1.

1 1 1	Distance 2
<u>Location</u> '	<u>Distance</u> ²
0	0
10	-0.2
20	0.8
30	1.5 2.3
40 50	3.2
60	4.0
70	4.8
80	5.6
90	6.3
100	6.9
¹ Distance measured in the do of impact.	wnstream direction with O as the point
² Measured perpendicular to t the impact side of the vehic	he barrier plane at the front tire on cle.
Note: All dimensions are ir	feet. 1 ft = 0.305 m

VENTOL	KINETI	cs sundu	ARYFROM P	ILN AN	LYSIS		
			HEADING	VEL.	(FPS)	DISP.	(₽)
TIME (S)	ACCEL. LONG.	(G`S) Lat.	ANG. (DEG)	LONG.	LAT.	X	¥
		3.51	20.51	74.75	3.18	.99	-4.6
.000	-2.77 -2.84	3.66	20.05	73.87	3.74	1.69 2.40	-4.4
.010 .020	-2.87	3.78	19.49	72 .99 72 .12	4.21 4.60	3.10	-4.0
.030	-2.88	3.87	18.82 18.06	71.26	4.91	3.79	-3.8
.040	-2.85	3.93 3.96	17.22	70.42	5.13	4.48	-3.6
.050 .060	-2.80 -2.74	3.97	16.29	69.61	5.28 5.36	5.17 5.85	-3.4
.070	-2.65	3.95	15.30 14.25	68.84 68.10	5.37	6.53	-3.2
.080	-2.55	3.90 3. 8 4	14.25	67.40	5.32	7.20	-3.1
. 090	-2.43 -2.31	3.75	12.02	66.74	5.21	7.86 8.52	-3.0
.100 .110	-2.18	3.64	10.85	66.12	5.06 4.85	9.18	-2.9
.120	-2.05	3.52	9.67 8.49	65.54 65.00	4.61	9.83	-2.8
.130	-1.91	3.37 3.21	7.30	64.50	4.33	10.48	-2.8
.140	-1.78 -1.65	3.04	6.13	64.04	4.03	11.12 11.76	-2.7
.150 .160	-1.53	2.86	4.98	63.60	3.70 3.35	12.40	-2.7
.170	-1.41	2.66	3.87 2.79	63.20 62.82	2.99	13.03	-2.7
.180	-1.30	2.45	1.75	62.46	2.61	13.65	-2.7
.190	-1.20 -1.11	2.03	.77	62.13	2.23	14.28 14.90	-2.7
.200 .210	-1.02	1.81	15	61.82	1.86 1.48	15.51	-2.8
.220	94	1.59	-1.01 -1.80	61.53 61.26	1.11	16.13	-2.8
.230	87	1.37 1.16	-2.51	61.00	.76	16.74	-2.8
.240	81 75	.95	-3.15	60.7 6	.41	17.35 17.95	-2.9
.250 .260	70	.75	-3.72	60.53	.09 22	18.55	-2.9
.270	65	. 55	-4.21 -4.62	60.31 60.11	51	19.15	-3.0
.280	60	.37 .19	-4.96	59.92	77	19.75	-3.0
. 290	55 51	.03	-5.22	59.74	-1.01	20.35 20.95	-3.1
.300 .310	47	12	-5.42	59.58 50 43	-1.23 -1.42	21.54	-3.2
. 320	43	26	-5.54 -5.60	59.43 59.30	-1.59	22.13	-3.2
.330	39 35	38 49	-5.61	59.18	-1.73	22.72	-3.2
.340	35	58	-5.56	59.08	-1.85	23.31 23.90	-3.3
.350 .360	26	65	-5.46	58.99 58.92	-1.96 -2.04	24.49	-3.4
.370	22	71	-5.33 -5.16	58.92	-2.10	25.08	-3.4
. 380	18	75 76	-4.97	58.82	-2.14	25.67	-3.4
. 390	13 09	76	-4.76	58.79	-2.18	26.25	-3.4
. 400	05	74	-4.54	58.78	-2.20	26. 84 27.43	-3.5
.410 .420	05	-,71	-4.32	58.77	-2.21 -2.21	28.02	-3.5
.430	.03	65	-4.11 -3.91	58.79 58.81	-2.20	28.61	-3.5
.440	.06	57 47	-3.74	58.84	-2.19	29.19	-3.6
.450	.10 .13	36	-3.59	58.88	-2.18	29.78 30.37	-3.6
.460 .470	.15	23	-3.48	58.93	-2.16 -2.14	30.96	-3.6
480	.18	08	-3.41 -3.39	58.99 59.05	-2.11	31.55	-3.6
. 490	.20	.09 .27	-3.42	59.11	-2.08	32.14	-3.6
. 500	.21 .23	.47	-3.49	59.18	-2.04	32.74 33.33	-3.7
.510 .520	.24	. 69	-3.63	59.25	-1.99	****	
		HIGHE	ST 50-MS A Ti	VG.ACCE	L.)		
		G-8	STAR	E	ND		
				•	550		
	DNG. At.	-2.83 3.96		•	850		

Table 24. Vehicle kinetics data (transducer), test KM-1.

VEHICLE KINETICS SUMMARY NOTE: VALUES ARE INSTANTANEOUS AT TIME

TIME (S)	ACCEL LONG.	(G'S) L at .	HEAD.ANG DEG	. VELOCI	TY(FPS) LAT.	DIS X	5P.(F) Y
.000	-3.58	09	20.51	74.75	3.18	.99	-4.67
.010	49	2.95	20.22	73.46	4.46	1.70	-4.45
.020	-2.82	10.36	19.77	72.48	6.98	2.40	-4.25
.030	-12.16	9.51	19.06	71.25	8.23	3.11	-4.08
.040	97	19.84	18.18	68.45	9.93	3.80	-3.94
.050	-4.61	5.86	17.00	67.00	11.63	4.48	-3.85
.060	14	8.05	15.55	65.94	11.47	5.15	-3.77
.070	-3.71	9.75	14.00	65.89	11.21	5.81	-3.71
.080	2.62	76	12.45	65.42	9.90	6.48	-3.67
.090	1.10	. 52	10.91	- 65.45	9.12	7.14	-3.63
.100	-2.27	3.56	9.40	64.81	7.92	7.80 8.45	-3.60
.110	. 48	1.12	7.98	65.05	6.51 5.59	9.10	-3.57 -3.55
.120	90	5.93	6.59 5.27	64.75 64.17	6.76	9.75	-3.55
.130	-5.84	7.93	4.14	62.91	8.18	10.39	-3.54
.140	-1.65	1.73 -1.06	3.27	63.20	8.51	11.02	-3.61
.150	1.79 -2.48	2.83	2.48	62.50	7.95	11.65	-3.66
.160	-1.86	-2.70	1.76	61.93	6.92	12.28	-3.71
.170 .180	.82	.09	1.20	61.75	6.22	12.90	-3.76
.190	49	.15	. 68	61.40	5.29	13.51	-3.81
.200	.06	-1.98	.24	61.16	4.84	14.13	-3.86
.210	.82	-2.46	11	61.25	4.27	14.74	-3.90
.220	97	03	41	61.06	3.91	15.35	-3.94
.230	21	15	70	60.97	3.56	15.96	-3.99
.240	90	.03	-1.00	60.92	3.30	16.57	-4.03
.250	-1.65	09	-1.31	60.69	3.06	17.17	-4.07
.260	76	.15	-1.58	60.48	2.78	17.78	-4.12
. 270	21	.03	-1.84	60.52	2.48	18.38	-4.16
.280	.96	.46	-2.07	60.52	2.26	18.99	-4.21
. 290	21	58	-2.31	60.51	1.97	19.59	-4.25
. 300	01	15	-2.53	60.46	1.72	20.19	-4.29
.310	14	27	-2.75	60.43	1.52	20.80	-4.34
.320	. 82	21	-2.95	60.48	1.31	21.40	-4.38
.330	69	. 33	-3.16	60.45	1.16	22.00	-4.43
. 340	62	. 33	-3.38	60.26	.89	22.61	-4.47
.350	. 68	52	-3.57	60.14	.71	23.21	-4.52
.360	. 48	82	-3.74	60.06	. 59	23.81	-4.56
.370	2.27	-1.00	-3.90	60.08	. 40	24.40	-4.61 -4.65
	-1.24	15	-4.07	59.94	.10 22	25.00 25.60	-4.69
. 390	. 62	.82	-4.22	59.67	16	26.20	-4.73
.400	76	. 88	-4.35	59.66	10	20.20	
HIGHEST	50.0-MS	AVG. A	CCEL. TIME (SI	2C)			
	G'	s s	TART	END			
LONG.	-5.4	2	.016 .	066			
LAT.	8.1	-		052			
		-					

118

Table 25. Occupant risk data (film), test KM-1.

OCCUPANT RISK SUMMARY -- FROM FILM ANALYSIS NOTE: AVG. ACCEL. FOR PRIOR 0.010 SEC. CALCULATED FROM VEHICLE VELOCITY CHANGE RELATIVE VALUES-(OCCUPANT W.R.T. VEHICLE)

TIME	ACCE: LONG.		ANG. VI			PS)	DIS	
(5)	LONG.	LAT	. (RAD/5			LAT.	LONG	
. 000	-2.77	3.51						-
	-2.84	3.66				.00	. 0	
.010						94	. 0	
.020	-2.87	3.78				1.95		
. 030	-2.88	3.87				3.02	. 0:	
.040	-2.85	3.93				4.15	. 05	
.050	-2.80	3.96	. 30			5.32	. 01	
.060	-2.74	3.97		3.8		6.54	.11	
.070	-2.65	3.95		4.4		7.80	. 15	
.080	-2.55	3.90	. 25	4.9	9 -	9.08	. 19	35
. 090	-2.43	3.84	. 23	5.4	7 -1	0.39	. 24	45
. 100	-2.31	3.75	.21	5.8	9 -1	1.70	. 28	57
.110	-2.18	3.64	. 19	6.2	7 -1:	3.03	. 33	70
.120	-2.05	3.52	.17	6.5		4.34+		
.130	-1.91	3.37*	.15	6.8		5.64	.43	
.140	-1.78	3.21		7.0		5.92	.48	
.150	-1.65	3.04	.11	7.27		.16	. 52	
.160	-1.53	2.86	.09	7.42		.36	.57	
.170	-1.41	2.66	.07	7.54		.51	. 61	
.180	-1.30	2.45	.05	7.63				-1.77
					-	.61	. 65	-1.99
.190	-1.20	2.24	.03	7.70		. 65	. 69	-2.22
.200	-1.11	2.03	.01	7.77			.73	-2.47
.210	-1.02	1.81	.00	7.83		. 52	.76	-2.72
.220	94	1.59	02	7.89		. 35	.80	-2.98
.230	87	1.37	03	7.96	-26	.10	. 83	-3.25
.240	81	1.16	04	8.04		.78	. 87	-3.52
.250	75	. 95	06	8.14	-27	. 38	. 91	-3.81
. 260	70	. 75	06	8.25	-27		. 95	-4.09
. 270	65	. 55	07		-28		1.00	
.280	60	. 37	08	8.54		•	1.05	-4.67
. 290	55	.19	09	8.72			1.11	-4.97
. 300	51	. 03	09	8.91			1.18	-5.26
.310	47	12	09	9.12	-29.		1.25	-5.56
. 320	43	26	10	9.34	-29.		1.33	-5.86
. 330	39	38	10	9.58	-29.			
. 340	35	49	10				1.42	-6.16
				9.81			1.51	-6.45
.350	30	58	10	10.05			1.62	-6.74
.360	26	65	10	10.29			1.73	-7.03
.370	22	71	09	10.51			1.85	-7.32
. 380	18	75	09	10.72+			1.98+	-7.61
. 390	13	76	09	10.91	-28.0	67	2.11	-7.89
. 400	09	76	08	11.08	-28.4	11	2.25	-8.17
.410	05	74	08	11.22	-28.1	13	2.40	-8.44
420	01	71	08	11.32	-27.4	15	2.54	-8.71
430	.03	65	07	11.40	-27.5		2.69	-8.98
440	.06	57			-27.3		2.83	-9.24
450	.10	47	07	11.43	-27.0	4	2.98	-9.51
460	.13	36	04	11.39	-26.8	1	3.12	-9.77
470	.15	23	06	11.32	-26.4	2	3.25	-10.03
480	.13 .15 .18	08	04	11.20	-26.A	7	3.37	-10.29
			04	11.05	-26.1	7	3.49	-10.55
490 500	.20 .21+		06	14.VJ	-44.3 -76 7	í	3.59	
occu	P. RISK				ę	ri)(E (S)		CITY M
						(0)		
	NG. VEL							0.75

	ANT RISK INSTANT		Y 10-MS AVI	ERAGE A	CELERATI	ons	
	(VEHICL	E)	(oc	CUPANT	
-						DIS Long.	
.000	-3.58	09	39	.00	.00	.00 .01 .02 .03 .07	.00
.010	90	6.86	63	1.00	-1.39	.01	01
. 020	-9.23	7.16	-1.18	2.56	-6.04	.02	03
.030	-6.75	12.07	-1.77	4.63	-8.20	.03	15
.050	-5.33	4.35	-2.63	4.98	-10.45	.11	25
.060	-1.76	5.54	-2.49	6.14	-12.36	.11 .16 .21	37
.070	-1.11	3.13	-2.81	5.66	-13.75	.21	51
.080	-1.97	2.38	-2.70	6.08	-14.61	.25	66
. 090	-1.66	2.77	-2.77	5.73	-15.75	.25 .29 .33	82
.100	-1.03	94	-2.69	6.18	-16.61	.33	99*
.110	71	1.88	-2.28	6.14	-17.51	.36 .39	-1.17
.120	-1.01	5.U4 9 604	-2.3/	5.9/	-10.20	. 39	-1.55
140	-1.11	6.40	-1.80	7.79	-24.67	. 46	-1.56 -1.80
. 150	15	1.45	-1.38	7.73	-26.60	.51	-2.07
.160	-3.00	.79	-2.13 -1.80 -1.38 -1.42 -1.03	8.11	-26.99	. 56	-2.34
.170	-1.64	-1.78	-1.03	8.91	-27.32	.61	-2.34 -2.62
.180	41	21	94	8.98	-27.43	.67	-2.90
. 190	-1.72	.05	94 88 67	9.20	-27.22	.74	-3.18 -3.46
. 200	01	-1.27	67	9.52	-27.57	.80	-3.46
.210	28	18	57	9.42	-27.55	.88 .95 1.03 1.10 1.17	-3.74
.220	68	.29	46	9.62	-27.70	.95	-4.02
.230	.00	28	54	9.51	-27.74	1.03	-4.30
250	77	. 37	- 51	9.41	-27.90	1.10	-4.37
.260	29	04	46	9.69	-28.02	1.24	-5.15
.270	.08	.12	42	9.59	-28.08	1.31	-5.44
.280	07	25	42 41	9.48	-28.16	1.39	-5.73
. 290	20	10	41	9.38	-28.16	1.45 1.52	-6.01
.300	05	.16	38	9.37	-28.23	1.52	-6.30
.310	05	01	37	9.31	-28.29	1.59	-6.59
. 320	. 29	.14	34 38	9.20	-28.38	1.66	-6.88 -7.17
.340					-28.45	1.79 1.86	-7.46 -7.75
		.15	30	0.74	-38 47		
			27	9.211	-28.0/	1.93 2.00+	-8.04
.380	45+	35	-,28	9.27	-28.59	2.00+	
. 390	56	. 09	28	9.51	-28.51	2.13	-8.92
.400	36	.46	22	9.48	-28.74	2.21	
OCCUP. F	ISK FACT	ORS			TIME (S)	VELOCITY (FPS)	
STONG.	VEL. AF	TER 2.0	FT. DISP		.370	9.18	
			FT. DISP		.101	-16.69	
мах. асс	EL. AFTE	R OCCUPI	NT IMPAC	T 1	INE(S)	ACC. (GS)	
>LONG.	ACCELER	TION			.383	-1.13	
	ACCELER				.131	9.99	

	Before Test	After Test	Crush
L	48	48	Not Applicable
C-1	1.3	4.0	2.7
C-2	0.0	2.8	2.8
C-3	0.0	-0.8	+0.8
C-4	0.0	8.8	8.8
C-5	0.3	8.5	8.2
C-6	0.3	10.0	9.7
aximum c enterlin		location of 22 to	the right of vehicle

APPENDIX F: SUMMARY OF RESULTS, TEST KM-2

Test No
Beam Member 9- by 10in. [25.4cm by 22.8cm] Length - ft[m] 2 @ 24(7.3) and
Maximum Deflections - in [cm] Permanent none Dynamic
Post Details of the posts, curb, and deck are included in figure 40.
Vehicle 1983 Ford F150 Pickup
Mass - 1b [kg] Test Inertia
Speed - mi/h [km/h] 46.6 [75.0]
Angles – degrees Impact
Occupant Impact Velocity - ft/s [m/s] Forward (film/accel) 2.3 [0.7]/7.2 [2.2] Lateral (film/accel)18.2 [5.5]/ 21.3.3 [-6.5]
Occupant Ridedown Accelerations - g's Forward (accel) * Lateral (accel) 9.7
Maximum 50 msec Avg Accelerations - g' Longitudinal (film/accel)2.7/-3.4 Lateral (film/accel) 4.9/8.8
Vehicle Damage TAD 01-FR-4 VDI 01FREE6

°.

274

TEST KM-2

Barrier Installation

The barrier evaluated in the test was a Modified Kansas Corral bridge rail. The barrier system, which consisted of concrete posts, rails and a 6-in (15-cm) curb, was constructed on a simulated bridge deck. Total system length was 69 ft (21 m). Figure 40 presents details of the system tested.

Test Purpose

The purpose of this test was to investigate the dynamic interactions of the pickup truck with the bridge rail and curb. Goals for this test were: (1) the vehicle must not penetrate or vault over the system, (2) the vehicle should remain upright throughout the event, and (3) the vehicle after-collision trajectory should not present undue hazard to other traffic.

Test Vehicle

The vehicle used in the test was a 1984 Ford F150 Pickup. Gross test weight, including the dummy and instrumentation was 5419-1b (2458 kg).

Performance

Impact conditions were 46.6 m/h [74.9 km/h] and a 20.0-degree impact angle. As shown in figure 41, the vehicle impacted the barrier 0.8 ft [0.2 m] downstream of Post 7. The vehicle remained in contact with the barrier for 15.0 ft [4.6 m] before redirection at a -2.4 degree angle. The vehicle showed no tendency to snag on the curb or posts during the impact sequence. No significant pitch, roll, or yaw was noted during impact and redirection. The vehicle came to rest 190 ft [58 m] downstream of the impact point and 35 ft [11 m] out from the barrier plane. The vehicle brakes were applied at approximately 130 ft [40 m] after impact. Table 28 presents after impact vehicle trajectory. The barrier did not deflect during impact.

Film data indicated maximum 50 m/s averages of -2.7 g's (longitudinal) and 4.9 g's (lateral). Maximum 50 m/s average accelerations from transducer data indicated -3.4 g's (longitudinal) and 8.8 g's (lateral). Figure 43 presents a summary of test results. Vehicle kinetics from film and onboard

transducers are listed in tables 29 and 30. Plots of vehicle accelerations are presented in figure 44. Tables 31 and 32 present occupant risk data derived from film and the on-board transducers.

Barrier Damage

Damage to the barrier consisted of cosmetic scuff marks on the rail and curb. Minor gouging from wheel contact was noted on the lower edge of the rail in the impact area. Inspection of the barrier system revealed no fractured posts or rail members. The barrier was considered as undamaged.

Vehicle Damage

-19-1-19-1-

 $\mathbb{T}^{n_{ij}}$

Damage to the vehicle consisted of sheet metal deformation of the right front fender, side, and rear fender. The front bumper was deformed inward at the impact area. The right front tire was blown out during impact. Vehicle damage was considered commensurate with the severity of the impact. Vehicle damage measurements are contained in table 33.

Figure 40. Barrier construction details, test KM-2.

Figure 41. Sequential photographs during impact (overhead view), test KM-2.

:-

98.v

0

area

Figure 42. Sequential photographs during impact as viewed from downstream, test KM-2.

Test No	Angle - degrees
Test Date	Impact
Installation Longth - ft (m)	Exit
loan	
Hember 9-in (22.8cm)x 10-in (25.4 cm) reinforced concrete	Occupent impect Velocity - fps [m/s]
Longth - ft [m] 2 8 24 (7.3) and 1 8 16 (4.9)	Forward (accel) 2.3 [0.7]/7.2 [2.2] Lateral (accel)
Meximum Deflections - in. [cm]	
Permanent	Occupant Ridadown Accelerations - gts
Dynamic	Forward (accel)
Post	Lateral (accel)
Details of the posts, blockouts, curb, and deck are included in	
figure 1.	Maximum 50 m/s Avg Accelerations - g's
	Longitudinel (film/accel)
Vehicle	Lateral (film/accel)
Nees - 1b [kg]	Vehicle Damege
Test inertia	TAD
Dummy	V01
Gross Test Weight	···· · · · · · · · · · · · · · · · · ·
Speed - mi/h (km/h)	

Figure 43. Summary of results, test KM-2.

Figure 44. Vehicle acceleration plots, test KM-2.

Location ¹	<u>Distance</u> ²
0	0
10	-0.3
20	1.0
30 40	2.3 2.4
40 50	3.3
60	4.3
70	5.2
80	6.3
90	7.5
100	8.8
Distance measured in th of impact.	e downstream direction with O as the point
Measured perpendicular the impact side of the v	to the barrier plane at the front tire on vehicle.
	°e in feet. 1 ft = 0.305 m

13h10 20	Vehic	le ki	netics o	iata (film),	test	KM-2.
TIME	ACCEL.	(G` S)	HEADING	VEL. LONG.		DISP. X	
(5)	LONG.	LAT.	ANG. (DEG)				
	-1.63	1.04	20.04	68.31	-2.00	-8.80	-4.90 -4.65
.000 .010	-1.62	1.72	20.03	67.79	-1.56	-8.17 -7.54	-4.41
. 020	-1.59	2.36	19.95	67.27	-1.01 36	-6.91	-4.18
.030	-1.57	2.94	19.77	66.76 66.26	.37	-6.29	-3.95
.040	-1.53	3.46	19.50	65.78	1.14	-5.66	-3.74
. 050	-1.44	3.91	19.14 18.69	65.32	1.94	-5.04	-3.54
.060	-1.43	4.28 4.57	18.15	64.90	2.75	-4.41	-3.36
.070	-1.36	4.70	17.52	64.50	3.55	-3.79	-3.19
.080	-1.21	4.90	16.82	64.15	4.32	-3.16	-3.04 -2.90
.090 .100	-1.14	4.96	16.04	63.83	5.05	-2.53 -1.90	-2.78
.110	-1.06	4.94	15.20	63.56	5.70 6.29	-1.28	-2.68
.120	98	4.85	14.30	63.33	6.79	65	-2.59
.130	92	4.70	13.36	63.13 62.96	7.19	02	-2.52
.140	86	4.49	12.38 11.38	62.82	7.50	.61	-2.46
.150	01	4.24	10.37	62.70	7.71	1.24	-2.42
.160	77 75	3.63	9.35	62.60	7.82	1.88	-2.39
.170	74	3.29	8.33	62.49	7.83	2.51	-2.37
.180	74	2.94	7.34	62.39	7.74	3.13	-2.36
.190	76	2.58	6.36	62.28	7.57	3.76	-2.37
.210	78	2.22	5.42	62.15	7.32 7.00	5.01	-2.39
. 220	81	1.86	4.53	62.01	6.63	5.64	-2.42
.230	84	1.53	3.68	61.85 61.66	6.21	6.26	-2.44
. 240	87	1.21	2.88 2.14	61.46	5.76	6.87	-2.48
.250	90	. 92	1.46	61.23	5.28	7.49	-2.51
.260	92	.65 .42	.85	60.99	4.80	8.10	-2.55
.270	93 93	.22	. 29	60.73	4.32	8.71	-2.59
.280 .290	-,92	. 07	19	60.46	3.85	9.32	-2.63 -2.67
. 300	90	06	62	60.20	3.40	9.92 10.52	-2.71
. 310	86	14	98	59.93	2.99	11.12	-2.75
. 320	81	18	-1.29	59.60	2.61 2.29	11.71	-2.79
. 330	75	19	-1.54	59.44	2.02	12.30	-2.83
.340	67	15	-1.75	59.22 59.02	1.01	12.89	-2.87
. 350	58	09	-1.92 -2.05	58.85	1.66	13.48	-2.91
. 360	49	.01	-2.15	58.71	1.58	14.07	-2.94
. 370	40	.14	-2.23	58.60	1.56	14.65	-2.98
. 380	30	. 29 . 45	-2.30	58.52	1.61	15.24	-3.02
. 390	21 13	.64	-2.36	58.47	1.72	15.82	-3.06
.400	05	.83	-2.43	58.44	1.89	16.41	-3.10 -3.15
.410 .420	.01	1.02	-2.50	58.44	2.11	16.99 17.57	-3.20
. 430	. 05	1.21	-2.59	58.46	2.38 2.68	18.16	-3.25
.440	. 08	1.39	-2.71	58.48	3.02	18.74	-3.31
.450	.08	1.55	-2.84	58.52 58.55	3.37	19.32	-3.37
.460	.06	1.69	-3.01 -3.21	58.57	3.73	19.90	-3.43
.470	.00	1.80 1.87	-3.45	58.58	4.08	20.49	-3.51
.480	07	1.90	-3.72	58.55	4.41	21.07	-3.59
.490	18 32	1.88	-4.02	58.50	4.71	21.65	-3.67 -3.76
.500	49	1.82	-4.36	58.40	4.96	22.23	-3.86
.510 .520	69	1.70	-4.72	58.24	5.16	22.81 23.38	-3.96
. 530	92	1.53	-5.10	58.01	5.30	23.95	-4.07
.540	-1.16	1.31	-5.50	57.72 57.34	5.33	24.52	-4.18
. 550	-1.42	1.03	-5.90	56.87	5.21	25.08	-4.29
.560	-1.70	.71	-6.30 -6.68	56.32	5.00	25.64	-4.41
. 570	-1.97	.33	-7.04	55.67	4.69	26.19	-4.52
.580	-2.23	09 55	-7.35	54.94	4.29	26.73	-4.63
. 590	-2.46	-1.04	-7.62	54.14	3.78	27.27	-4.75
. 600	-2.64	-1.55	-7.83	53.28	3.17	27.79	-4.85
.610 .620	-2.76	-2.06	-7.96	52.40		28.31	-4.95 -5.05
.630	-2.64	-2.57		\$1.53	1.67	28.83	-5.13
.640	-2.35	-3.04	-7.97		.80 13	29.33 29.83	-5.20
. 650	-1.87	-3.46	-7.84	50.03		30.32	-5.26
. 660	-1.14	-3.78		49.55	-2.10	30.81	-5.31
.670		-3.98		49.34	-3.06	31.31	-5.35
. 680	1.24	-4.00	-6.93 -6.50	50.23	-3.94	31.81	-5.37
. 690	2.98	-3.79	-0.50 ST 50-HS A	-			s
			TI	HE (SEC)) ND		
		<u>a_</u>					
		G-8	START				
14	ONG.			.64			

	LE KINET VALUES			S AT TIME	:		
TIME (S)	ACCEI LONG.	L.(G 'S) L at .		G. VELOC LONG.	ITY(FPS) LAT.	DI X	[SP. (F) Y
.000	. 79	.81		68.31	-2.00	-8.80	
.010	-5.44	3.99		67.81		-8.17	
.020	.82	80		67.59		-7.53	
.030	-1.63	5.64 -1.19		67.83	.45	-6.90	
.040 .050	1.11 .04	3.14		66.91 67.23	.63 .42	-6.26 -5.63	
.060	-10.66	6.03		65.33	. 59	-5.00	
.070	. 45	9.93	18.47	64.95	1.79	-4.39	
.080	-7.39	11.35	17.70	64.42	3.86	-3.77	
. 090	-7.32	11.08	16.90	62.20	6.75	-3.15	
.100	-3.05	8.75	16.08	62.03	9.59	-2.53	-2.90
.110	25	3.04	15.10	61.79	10.25	-1.91	-2.83
.120	-2.73	.22	13.97	61.13	9.68	-1.29	-2.78
.130 .140	91 -6.35	7.54	12.77 11.51	61.40 61.10	8.83 8.23	67 05	-2.72
.150	-2.10	4.36 7.54 2.12	10.23	60.98	7.06	.56	-2,64
.160	91	70	8.91	60.89	5.68	1.18	-2.60
.170	3.47	76	7.50	61.32	3.89	1.79	-2.56
.180	-2.51	1.11	6.04	61.49	1.91	2.40	-2.52
. 190	25	5.54	4.60	61.21	3.43	3.01	-2.49
.200	. 64	3.24	3.39	61.09	4.08	3.62	-2.48
.210	-2.57	-4.04	2.29	60.92	2.37	4.23	-2.49
. 220	2.74	1.21	1.28	60.19	1.25	4.84	-2.48
.230	-4.18 -1.98	6.52 14.43	.30 57	59.43 59.85	1.32 2.67	5.44 6.03	-2.49
.240 .250	-6.07	9.97	-1.18	59.73	4.19	6.63	-2.55
.260	-7.23	5.37	-1.53	58.49	5.23	7.22	-2.61
.270	4.73	1.89	-1.78	57.76	5.89	7.80	-2.68
. 280	-1.63	3.08	-1.99	57.89	6.74	8.38	-2.76
. 290	-3.20	. 19	-2.16	57.53	6.53	8.95	-2.85
.300	-4.08	1.17	-2.31	57.20	6.19	9.52	-2.94
.310	-2.92	2.22	-2.42	56.90	6.59	10.09	-3.03
.320	12 .10	1.57 -1.39	-2.47 -2.45	56.96 56.94	6.78 6.91	10.66 11.22	-3.12 -3.21
.330 .340	-1.28	2.45	-2.41	56.88	6.89	11.79	-3.30
. 350	91	.94	-2.37	56.58	7.12	12.35	-3.40
.360	-1.13	.42	-2.35	56.40	6.95	12.92	-3.49
. 370	.10	.42	-2.32	56.37	6.61	13.48	-3.58
. 380	. 38	30	-2.31	56.31	6.81	14.04	-3.67
. 390	75	14	-2.27	56.22	6.66	14.60	-3.76
.400	-1.00	. 29	-2.25	56.17	6.67	15.15	-3.85
.410	.01	27	-2.24	55.98	6.73		-3.94
.420	.01	. 02	-2.26	55.93	6.76		-4.03
.430	.79 .29	.16 37	-2.28	55.89 56.09	6.92 6.93	16.82 17.38	-4.12
.440 .450	12	11	-2.25	56.02	6.94	17.94	-4.30
.450	50	1.07	-2.22	55.96	7.17	18.50	-4.39
.470	62	.45	-2.18	55.84	7.50	19.05	-4.49
.480	62	. 29	-2.12	55.73	7.64	19.61	-4.58
. 490	.38	1.21	-2.07	55.66	8.04	20.16	-4.68
.500	50	1.07	-2.00	55.54	8.54	20.71	-4.79
.510	62	.42			8.79	21.26	-4.89
. 520	03		-1.83	55.24	9.11	21.81	-5.00
.530 .540	50 .13		-1.74 -1.65	55.12 54. 96		22.36 22.91	-5.11
HIGHEST							
	G'S		TIME (SE	C) END			
LONG.				101			

ζeγ.e.

OCCUPANT	RISK SU	MMARY , FOR PRI	FROM FI	LM ANAL 0 SEC.	YSIS CALCULAI	TED	
NOTE: AV	G. ACCEL	CITY CHA	NGE	• • • • • •			
RELATIVE	VALUES-	(OCCUPANT	W.R.T.	VEHICL	E)		
(VEHICLE -) (OCCL	DISP.	·) (?)
TIME	ACCEL.	(G'S) AN	G. VEL	LONG.	LAT.	LONG.	LAT.
(S)	LONG.	LAT. (.00
. 000	-1.63	1.04	.35	.00	.00 61	.00 .00	.00
.010	-1.62	1.72	.35 .35				01
	-1.59	2.36 2.94	.35	.99	-2.48	. 02	03
	-1.57 -1.53	3.46	. 34	1.27	-1.44 -2.48 -3.71 -5.10 -6.63 -8.26	.03 .04	06 11
	-1.48	3.91	. 33	1.53	-5.10	. 06	17
.060	-1.43	4.28 4.57	.33 .32	1.96	-8.26	.07	24
			.32	2.12	-9.98	. 09	33
	-1.29 -1.21	4.90	.29	2.25	-8.26 -9.98 -11.74 -13.52	.11	44 57
	-1.14	4.96	.28	2.33	-13.52	.12	72
110	-1.06	4.94	. 27	2.36	-15.30	.15	88*
. 120	98 92	4.85 4.70*	23	2.31	-18.74	. 10	-1.06
.130	92	4.49	.22	2.23	-20.35	.16	-1.26
.140 .150	86 81	4.24	. 20	2.12	-21.88	.16 .15	-1.4/
. 160	77	3.95	.18	2.00	-23.29 -24.59	. 14	-1.95
.170	77 75 74	3.63	.16 .15	1.71	-25.75	.12	-2.20
.180	74	3.29 2.94	.13	1.57	-26.78		-2.46
.190 .200	74 76	2.58	.11	1.45	-27.6/	.06 .03	-2.74 -3.02
.210	78	2.22	. 09	1.35	-28.42 -29.03	01	-3.31
. 220	78 81	1.86	.08 .06	1.24	-29.52	05	-3.60
. 230	84 87	1.53 1.21	.05	1.25	-29.89	08	-3.90
	8/	.92	.04	1.30	-30.15	12	-4.19 -4.49
.250 .260	92	. 65	.03		-30.30	16 20	-4.80
. 270	93	. 42	.01	1,51	-30.38 -30.37	23	-5.10
.280	93	.22 .07	.01 .00	1.86	-30.31	26	-5.40
.290 .300	92 90		01	2.07	-30.21	28	-5.70 -6.00
. 310	86	14	02	2.29	-30.08	29 30	-6.30
. 320	81 75		02	2.52	-29.93	30	-6.60
. 330		19 15	03 03	2.97	-29.78 -29.65	30	-6.89
.340	67 58		03	3.17	-29.54	29	-7.19 -7.48
.350 .360	49	.01	04		-29.47	27 25	-7.77
. 370	40	.14	04		-29.45	23	-8.07
.380	30	. 29	04 04	3.60 3.67	-29.59	20	-8.36
. 390	21 13	. 45 . 64	04	3.69	-29.77	18	-8.66 -8.96
.400 .410	13	.83	04		-30.02	15 12	-8.90
.410	.01	1.02	04		-30.35	10	-9.57
.430	.05	1.21	05 05	3.52 3.38	-31.23	09	-9.88
.440	.08	1.39 1.55	05	3.22	-31.77	08	-10.19
.450	.08 .06	1.69	05	3.03	-32.36	08 09	-10.51
.460	.00	1.80	06		-33.01 -33. 68	10	
.480	07	1.87	06 06	2.44	-34.37	13	-11.51
. 490	18	1.90	00	2.27+	-35.07	17+	-11.86
. 500	32	1.88					
					T 1	INE VE	LOCITY
00	CUP. RIS	K PACTORS	;				TPS)
							2.27
		EL. APTER		DTRP.		500	-18.15

 \mathcal{T}

Table	32. Occ	upant risk	c data (transdu	cer), te	st KM-2.
	NT RÍSK S Instantan	UMMARY IEOUS 10-MS	AVERAGE	Accelerat	IONS	
TIME (S)		EHICLE G'S) ANG.VI LAT. (RAD/S) 				
. 000	.79	.810	.0	0.0	0.00	00.00
.010	-1.09	2.03 .0)4 .5	66	0.00	00.00
.020	-1.20	1.59 .0	8.8	49	0.01	01
.030	.06	4.431	.5	0 -2.54	.02	03
.040	-1.40	1.586	8.2	a -3.14 2 -3.60	· · · · · · · · · · · · · · · · · · ·	06
. 060	-6.58	3.78 -1.0	0 1.7	0 -4.78	.03	13
.070	. 31	8.36 -1.3	6 1.5	9 -7.24	. 05	19
.080	-4.58 1	10.46 -1.3	6 2.0	7 -10.22	.07	28
.090	-1.70 1	0.51 - 1.3	7 4.1	9 -14.09	.10	40
. 100	- 94	3.07 - 1.0		9 -18.10 1 -20 26	.14	5/
.120	-1.42	1.15 -2.0	7 4.0	1 -21.30	* .19	97*
.130	.42	2.43 -2.19	9 3.36	-22.02	.20	-1.19
.140	23	1.85 -2.19	9 3.43	3 -22.90	.20	-1.42
.150	-1.94	.10 -2.2	3.22	2 -23.27	.20	-1.66
.160	94	36 -2.40	2.76	5 -23.63	.19	-1.90
180	07	1.35 -2.51 4.30± -2.54	1.80	-23.60	. 10	-2.38
. 190	57	7.84 -2.27	1.27	-26.20	.07	-2.63
.200	62	2.04 -2.00	1.29	-27.92	. 02	-2.90
.210 -	1.42 -	2.81 -1.87	1.20	-27.27	02	-3.18
. 220 -	2.33	3.23 -1.75	1.67	-27.16	06	-3.45
.230 -	2.06		2.15	-28.19	11	-3.72
250 -	4.35 d	.50 -1.31	2.25	-30.12	14	-4.01
.260 -	2.77	.3057	3.61	-32.85	17	-4.64
.270 -	2.68 2	.4738	4.45	-33.58	15	-4.97
. 280	.80 2	.2029	4.34	-34.55	12	-5.31
. 290 -	2.13 -	.6430	4.60	-34.53	10	-5.65
. 300	.01	.0424	4.93	-34.29	06	-6.00
.310 .	*.92 1 39	.6803	5.28	-34.72	02	-6.34
. 330	.09 -	.78 .07	5.51	-34.80	.08	-7.04
.340 -	. 96	.70 .05	5.56	-34.76	.14	-7.39
.350 -	. 48	.18 .04	5.88	-34.96	. 20	-7.74
. 360 -	.57 -1	.28 .05	6.07	-34.76	. 26	-8.08
. 370	.25 -	.06 .03	6.09	-34.42	. 33	-8.43
.380 -	.70	28 .05 .06 .03 .08 .04 .20 .05	6.29	-34.35	. 46	-9.12
.400 -	.21 .	12 .02	0.33	-34.3/	. 53	-9.46
.410 -	. 37 .	0501	6.47	-34.49		-9.81
		3405	6.46	-34.58	-	-10.15
.430	. 49 .	2801	6.54 6.40	-34.72		-10.50 -10.85
.440 .	.25 .42 .	31 .04	6.49	-14.65		-11.19
.460	25 .	94 .05		-34.83		-11.54
.470			6 76	_15 A8	1.00	
.480	24 .		6.92		1.08	
.490	37 1.	38 .08	6.99 7.21	-35.50	1.16	
.500	19 1.0	.14	1.41	-33.4/	1.44	- 16.73
OCCUP. RIS	k factori	B	-	TIME (S)	VELOCITY (FPS)	
		2.0 FT. DI 1.0 FT. DI	SP	. 500	7.21 -21.31	
		CCUPANT INP	ACT 1	TIME(S)	ACC. (GS)	
>LAT. A	CELERATI			.186	9.65	

	Before Test	After Test	Crush
L	56	56	Not Applicable
C-1	2.0	3.8	1.8
C-2	1.0	5.5	4.5
C-3	0.0	4.0	4.0
C-4	0.0	3.5	3.5
C-5	1.0	15.6	14.6
C-6	2.0	14.0	12.0
ximum cı	2.0 rush of 16.0 at a enterline.		

÷...

REFERENCES

<u>Reference</u>

- Jarvis D. Mitchie, "Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances," National Cooperative Highway Research Program, Washington, D.C., Report No. 230, March 1981.
- "Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals," American Association of State Highway and Transportation Officials, Washington, D.C., 1985.
- 3. M. E. Bronstad, et al, "Bridge Rail Designs and Performance Standards," Federal Highway Administration, Washington, D.C., Report No. FHWA/RD-87/049, February 1987.
- 4. T. J. Hirsch, "Analytical Evaluation of Texas Bridge Rails to Contain Buses and Trucks," Texas Transportation Institute, San Antonio, Texas, Research Report No. 230-2, August 1978.
- M. E. Bronstad, et al, "Concrete Median Barrier Research, Volume 2," Federal Highway Administration, Washington, D.C., Report No. FHWA-RD-77-4, March 1976.

·

.

L